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Abstract

The celebrated odd-even exchange algorithm by Batcher provides the quan-
tity average number of exchanges, which was a mystery a few years ago and is
still tricky today. We provide an approach that is purely based on generating
functions to provide an explicit expression. The asymptotic analysis was done
several years ago but never published in a journal and is thus provided here.
It is a combination of singularity analysis of generating functions and Mellin
transform techniques.
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1. Introduction

Batcher’s odd-even merge is a sorting method that is well documented in
books and papers, notably in Knuth’s monumenal work The Art of Computer
Programming, Volume 3 [9, 10].

Since it is a bit complicated and long to describe, we refrain from doing this
and just mention that its analysis (average number of exchanges, provided that
a random permutation is given) boils down to a lattice path counting problem:
All

�2n
n

�

lattice paths from (0,0) to (n, n) are considered; for each path, the
sum of the vertical weights that it traverses, is recorded. The total sum of
these counts, divided by the number of all paths

�2n
n

�

is denoted by Bn, the
average number of exchanges.
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The weights a0, a1, . . . and b0, b1, . . . will be discussed in a minute.
The analysis of this quantity was posed as an open problem in [9]; however,

Knuth came very close to the solution, as we will soon see. A first complete
answer was given by Sedgewick [15], who showed that

Bn =
1
�2n

n

�

∑

k≥1

�

2n
n− k

�

(2F(k) + k), (1)

where F(k) is the summatory function of f ( j), which is the number of ones in
the Gray code representation of j:

F(k) :=
∑

0≤ j<k

f ( j).

More important than the sequence f (k) itself it the sequence of its differences:

θ (k) = f (k)− f (k− 1),

since these numbers have a number theoretic significance, as discussed later.
The weights in our problem are ak = f (k) and bk = f (k) + 1.
Sedgewick also provided asymptotics for Bn, by a technique, that was called

Gamma function method at the period, which is today known as Mellin trans-
form; see the survey [2].
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Several writers started from the formula (1) and discussed alternative asymp-
totic methods, see, e. g., [4, 12, 13, 11, 8]. Sedgewick derived this formula
by skillful manipulations of binomial coefficients and sums involving them. A
more modern approach would be through generating functions, a point of view
that is emphasized in the important book [5], see also [6, 14]. Knuth himself
considered this problem through generating functions in the first edition [9]
and came very close to this formula. However, in the second edition [10], he
switched to Sedgewick’s approach.

Here, I want to present such a generating function approach, perhaps close
to what Knuth had in mind. In a final section, an asymptotic evaluation will
be presented, which is probably the best one that exists today; it was already
reported in [13], but the EATCS bulletin isn’t really a journal, and the approach
deserves to be better known.

2. A generating function approach

Instead of summing over all labels of one path, one splits such a path into
n copies, where each one carries exactly one of the n labels, and sums these.
We call such a path with exactly one vertical label a decorated path.

A decorated path goes from (0, 0) to (n, n) and carries exactly one (vertical)
label. Let V be the family of all paths (0,0) to (n, n), D be the family of all
paths (0, 0) to (n, n), staying on one side of the diagonal, Rp the family of
paths with vertical label ap, and Sp the family of paths with vertical label bp.
We write d for a down-step, and h for a horizontal-step.

With roman letters we write the associated ordinary generating functions
(only the down-steps, say, are counted).

We have the classical results, with the standard substition z = u
(1+u)2 , taken

from [1]:

W (z) =
1

p
1− 4z

=
∑

n≥0

�

2n
n

�

zn =
1+ u
1− u

,

D(z) =
1−
p

1− 4z
2z

=
∑

n≥0

1
n+ 1

�

2n
n

�

zn = 1+ u.

Furthermore, we have, by a decomposition according to returns to the di-
agonal,

Rp =WApW ,

and
Ap = dDAp−1Dh, p ≥ 1, A0 = ap · dDh.
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Hence
Ap = z(1+ u)2Ap−1, p ≥ 1, A0 = ap

u
1+ u

.

By iteration,

Ap = ap
up+1

1+ u
and therefore

Rp = ap
up+1(1+ u)
(1− u)2

;

by symmetry

Sp = bp
up+1(1+ u)
(1− u)2

.

As a check, assume that all weights are equal to one, then

∑

p≥0

(Rp + Sp) = 2
u(1+ u)
(1− u)3

,

which checks with the formula
∑

n≥0

n
�

2n
n

�

zn =
2z

(1− 4z)3/2
.

In the Batcher problem, we have bp = 1 + ap, and ap = f (p), with f (k)
being the number of ones in the Gray code representation of k. Then

B(z) :=
∑

p≥0

(Rp + Sp) =
u(1+ u)
(1− u)3

+ 2
∑

p≥0

f (p)
up+1(1+ u)
(1− u)2

.

We know that (explicitly in [9], implicitly in [15])

f (p) = [up]
1

1− u

∑

k≥1

u2k−1

1+ u2k .

Note also that

∑

k≥0

u2k

1+ u2k+1 =
∑

k≥0

∑

j≥0

(−1) ju2k(2 j+1)

=
∑

k≥0

∑

j≥0

u2k(4 j+1) −
∑

k≥0

∑

j≥0

u2k(4 j+3)
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=
∑

n≥1

θ (n)un,

where

θ (n) =

¨

1, for n= 2k(4 j + 1),
−1, for n= 2k(4 j + 3).

Therefore

B(z) =
u(1+ u)
(1− u)3

+ 2
u(1+ u)
(1− u)2

∑

p≥0

up · [up]
1

1− u

∑

k≥1

u2k−1

1+ u2k

=
u(1+ u)
(1− u)3

+ 2
u(1+ u)
(1− u)3

∑

k≥0

u2k

1+ u2k+1 .

This formula is the one given in [9]; note, however, that a factor 1− u seems
to be missing in it. Our formula is consistent with Sedgewick’s solution, as can
be seen as follows:

It is elementary that

[zn]
u(1+ u)
(1− u)3

=
n
2

�

2n
n

�

.

This is also
∑

k≥

k
�

2n
n− k

�

=
n
2

�

2n
n

�

from Sedgewick’s formula.
Furthermore,

[zn]
u(1+ u)
(1− u)3

∑

k≥1

θ (k)uk =
1

2πi

∮

dz
zn+1

u(1+ u)
(1− u)3

∑

k≥1

θ (k)uk

=
1

2πi

∮

du(1+ u)2n

un+1

u
(1− u)2

∑

k≥1

θ (k)uk

= [un](1+ u)2n u
(1− u)2

∑

k≥1

θ (k)uk

= [un](1+ u)2n u
1− u

∑

k≥1

f (k)uk

= [un](1+ u)2n
∑

k≥1

F(k)uk
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=
∑

k≥1

F(k)[un−k](1+ u)2n

=
∑

k≥1

F(k)
�

2n
n− k

�

.

3. Asymptotics

The general strategy is to use singularity analysis [5, 3]. The goal is to find
the local of behavior of

u(1+ u)
(1− u)3

∑

k≥1

θ (k)uk

near the dominant singularity z = 1
4 , and then translate it into the behavior

of the coefficients. In the u-language, this means the behavior around u = 1.
To obtain it, the Mellin transform is used. This chain of operations is by now
standard. A recent application with a fair amount of technical details provided
is [7].

A further substitution u= e−t is necessary for the Mellin transform to work.
It means that we have then to investigate the behavior of

e−t(1+ e−t)
(1− e−t)3

∑

k≥1

θ (k)e−kt

near t = 0. The factor in front is elementary, so we concentrate on the sum

V (t) :=
∑

k≥1

θ (k)e−kt .

By standard rules for the Mellin transform, this is

V (s) = Γ (s)
∑

k≥1

θ (k)k−s.

Note that
∑

k≥1

θ (k)k−s =
∑

m≥0

∑

i≥0

2−ms(4i + 1)−s −
∑

m≥0

∑

i≥0

2−ms(4i + 3)−s

=
1

1− 2−s
·

1
4s

�

ζ(s, 1
4)− ζ(s,

3
4)
�

,
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where the Hurwitz ζ(s, a)-function [16] is defined by

ζ(s, a) =
∑

n≥0

(n+ a)−s for ℜ(s)> 1.

We can write
Bn =

n
2
+

2
�2n

n

�Cn,

with

Cn =
∑

k≥1

F(k)
�

2n
n− k

�

= [un]
u(1+ u)
(1− u)3

∑

i≥1

θ (i)ui.

We easily find that
u(1+ u)
(1− u)3

∼
2
t3
+ · · · .

So we have
V ∗(s) = Γ (s) ·

1
2s
·

1
2s − 1

�

ζ
�

s, 1
4

�

− ζ
�

s, 3
4

�

�

.

As a consequence (Mellin’s inversion formula) we find

V (t) =
1

2πi

2+i∞
∫

2−i∞

Γ (s) ·
1
2s
·

1
2s − 1

�

ζ
�

s, 1
4

�

− ζ
�

s, 3
4

�

�

t−sd t.

The difference of the Hurwitz ζ-functions is an entire function; the integrand
has poles at s = χk := 2πik

log2 and s = 0,−1,−2, . . . . We have (see [16])

ζ
�

s, 1
4

�

− ζ
�

s, 3
4

�

∼
1
2
+ s
�

2 log Γ
�

1
4

�

−
1
2

log2− logπ
�

+ · · ·

for s→ 0. Also,

Γ (s)∼
1
s
− γ+ · · · ,

1
2s − 1

∼
1

log2
·

1
s
−

1
2
+ · · · ,

(2t)−s ∼ 1− s · log(2t) + · · · ,
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which gives us the residue at s = 0

−
5
4
−

γ

2 log 2
+ 2 log2 Γ (

1
4)− log2π−

1
2

log2 t.

The residue at s = χk for k 6= 0 is simply

1
log2

Γ (χk)
�

ζ
�

χk, 1
4

�

− ζ
�

χk, 3
4

�

�

t−χk .

We can simplify, because

ζ
�

χk, 3
4

�

= −ζ
�

χk, 1
4

�

.

Thus we obtain

Cn ∼ [zn]
2
t3

�

−
1
2

log2 t −
5
4
−

γ

2 log2
+ 2 log2 Γ

�

1
4

�

− log2π

+
2

log 2

∑

k 6=0

Γ (χk)ζ
�

χk, 1
4

�

t−χk

�

,

where, with ε :=
p

1− 4z and t ∼ 2ε

Cn ∼ [zn]
�

−
1
8
ε−3 log2 ε − ε

−3
� 7

16
+

γ

8 log 2
−

1
2

log2 Γ
�

1
4

�

+
1
4

log2π
�

+
1

2 log2

∑

k 6=0

Γ (χk)ζ
�

χk, 1
4

�

ε−3−χk

�

.

We find

[zn]ε−3 logε ∼
4npn
p
π

�

− log n+ (2− γ− 2 log2)
�

,

[zn]ε−3 ∼
2 · 4npn
p
π

,

[zn]ε−3−χk ∼ 4n n(1+χk)/2

Γ
�3+χk

2

� .

By regrouping the preceeding results we obtain

Cn ∼
4npn
p
π

log n ·
1

8 log 2
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+
4npn
p
π

�

−
1

4 log 2
−

γ

8 log2
−

5
8
+ log2 Γ

�

1
4

�

−
1
2

log2π

�

+
1
2

4npn
1

log 2

∑

k 6=0

Γ (χk)ζ
�

χk, 1
4

� nχk/2

Γ
�3+χk

2

� .

We have by the duplication formula [16]

Γ (χk)
À

Γ
�3+χk

2

�

=
1

1+χk

1
p
π
Γ
�χk

2

�

.

With
�

2n
n

�

∼
4nn−1/2

p
π

we find

Dn
�2n

n

� ·
1
n
∼

1
8

log2 n

−
1

4 log 2
−

γ

8 log2
−

5
8
+ log2 Γ

�

1
4

�

−
1
2

log2π

+
1

2 log 2

∑

k 6=0

ζ
�

χk, 1
4

�Γ (χk/2)
1+χk

nχk/2.

Finally we have obtained the following asymptotic result.

Theorem 1. The average number of exchanges in the odd-even merge of 2n ele-
ments satisfies

Bn ∼
1
4

n log2 n+ nB(log4 n),

where B(x) is a continuous periodic function of period 1; this function can be
expanded as a Fourier series

B(x) =
∑

k∈Z

bke2kπi x ,

with
b0 = −

1
2 log 2

−
γ

4 log 2
−

3
4
+ 2 log2 Γ

�

1
4

�

− log2π

and for k 6= 0

bk =
1

log2
ζ
�

χk, 1
4

�Γ (χk/2)
1+χk

.
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