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Abstract. Two-periodic random walks have up-steps and down-steps of one unit
as usual, but the probability of an up-step is α after an even number of steps and
β = 1 − α after an odd number of steps, and reversed for down-steps. This concept
was studied by Böhm and Hornik [1]. We complement this analysis by using methods
from (analytic) combinatorics. By using two steps at once, we can reduce the analysis
to the study of Motzkin paths, with up-steps, down-steps, and level-steps. Using a
proper substitution, we get the generating functions of interest in an explicit and neat
form. The parameters that are discussed here are the (one-sided) maximum (already
studied by Böhm and Hornik [1]) and the two-sided maximum. For the asymptotic
evaluation of the average value of the two-sided maximum after n random steps, more
sophisticated methods from complex analysis (Mellin transform, singularity analysis)
are required. The approach to transfer the analysis to Motzkin paths is of course not
restricted to the two parameters under consideration.

1. Introduction

Böhm and Hornik [1] have studied two-periodic random walks, with up-steps and
down-steps of one unit as usual, but the probability of an up-step is α after an even
number of steps and β = 1 − α after an odd number of steps, and reversed for down-
steps. See [1] for motivation and references. In the present paper we want to use a
different method to prove new results and rederive some others. So, this paper can be
seen as a companion paper to [1]. As references for the approach we choose we cite
[6, 7, 5]. In [1], a fair amount of space was dedicated to the study of the maximum of
such a random walk. The model under consideration is that the random walk (lattice
path) starts in the origin and may end anywhere after n steps. We plan, however,
to move to different models (e. g., non-negative paths) in future publications. The
following figure will be useful to understand our procedure.

We look at pairs of steps, and, since after an even number of steps, the random walk
can only end at an even level, we might as well reduce the grid to points with both
coordinates being even. In this way, we get a modified random walk which resembles
Motzkin paths (up-step, down-step, level-step), with suitable weights. We use the
abbreviations λ = αβ and µ = 1 − 2λ. Studying the modified walk will lead to
enumeration results for the original walk, after 2n steps. It is, however, only a small
modification, to deal with an odd number of steps, since we just add one single step
at the end, and this can be described. The parameter “maximum” is translated to the
maximum of the modified path, but with a small twist. We will compute (probability)
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generating functions for walks with maximum ≤ h. If h is an odd number, h = 2H+1,
then this is directly given by the maximum of the modified path being ≤ H, but for
even h = 2H, we must be careful that the original path, during odd numbered steps,
does not reach the level h + 1. So, for the modified path, on level H, we can make a
level step, but not with the full probability µ, but only with β2, which is the weight
of a down-up double step in the original path. The same principle applies, mutatis
mutandis, when we bound the random walks from below.

We will find generating functions for walks bounded from above and below, with
modifications when necessary. For each level that the walk can reach, there will be one
generating function, and they satisfy a system of linear equations that can be solved
explicitly using Cramer’s rule. The determinants that show up satisfy a second order
recursion, whence there is an explicit expression for them. One essential step within
our method is the substitution

z =
v

λ+ µv + λv2
.

Using this, all functions become rational, and manipulations are much easier. When
we are not interested in the level where the walks end, we simply sum. Sending the
lower bound to −∞ leads eventually to walks that are only bounded from above. From
this the expectation of the maximum parameter can be explicitly derived, and more
results as well if desired.

We will also deal with a new parameter , which is very natural here. If the (orig-
inal) walk is (0, s0 = 0), (1, s1), . . . , (n, sn), then we consider max0≤i≤n{|si|} instead
of max0≤i≤n{si} (maximum). We will call this the two-sided maximum. For this, we
compute generating functions of walks that “live” in a strip −h ≤ · · · ≤ h. Once again,
for odd h, this is easy, but for even h we need the modification at the top and bottom
levels. This parameter is more complicated than the maximum itself since it requires
more advanced techniques (Mellin transform, singularity analysis) for the asymptotic
evaluation.

2. The maximum

We start with paths (in the original sense), “living” in the strip −(2k + 1) ≤ · · · ≤
2h + 1. For the modified paths, this means −k ≤ · · · ≤ h. Eventually, we will send k
to infinity. According to the discussion in the Introduction, this leads to a system of
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linear equations for

ϕi(z) =
∑
n≥0

[probability that an admissible path ends at level i after n steps]zn :



ϕh
ϕh−1

...
ϕ0
...

ϕ−(k−1)
ϕ−k


= z



µ λ
λ µ λ

λ µ λ
. . .
λ µ λ

λ µ λ
λ µ





ϕh
ϕh−1

...
ϕ0
...

ϕ−(k−1)
ϕ−k


+



0
0
...
1
...
0
0


These functions also depend on h and k, but we avoid a clumsy notation for this. A
rearrangement leads to

1− µz −λz
−λz 1− µz −λz

−λz 1− µz −λz
. . .
−λz 1− µz −λz

−λz 1− µz −λz
−λz 1− µz





ϕh
ϕh−1

...
ϕ0
...

ϕ−(k−1)
ϕ−k


=



0
0
...
1
...
0
0


This system will be solved using Cramer’s rule. For that, we need the following deter-
minants:

ai =

∣∣∣∣∣∣∣∣∣∣

1− µz −λz
−λz 1− µz −λz

. . .
−λz 1− µz −λz

−λz 1− µz

∣∣∣∣∣∣∣∣∣∣
with i rows. Expanding the determinant with respect to the first row, say, leads to

ai = (1− µz)ai−1 − λ2z2ai−2
with a0 = 1, a1 = 1 − µz. Using standard methods to solve the recursion, together
with the substitution

z =
v

λ+ µv + λv2
↔ v =

1− µz −
√

(1− z)(1− z(1− 4λ))

2λz

leads to the explicit (and appealing!) answer

an =
1− v2n+2

1− v2

(
λ

λ+ µv + λv2

)n
.

Note that the root with the negative sign has the property z → 0⇔ v → 0.
With these quantities, the desired generating functions can be computed:

ϕi =
(λz)iah−iak
ah+k+1

, i = 0, . . . , h,
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ϕ−i =
(λz)iahak−i
ah+k+1

, i = 0, . . . , k.

This leads to

ϕi =
λ+ µv + λv2

λ

(1− v2k+2)

(1− v2)(1− v2(h+k+1)+2)
(vi − v2h−i+2)

and

ϕ−i =
λ+ µv + λv2

λ

(1− v2h+2)

(1− v2)(1− v2(h+k+1)+2)
(vi − v2k−i+2).

Further,

h∑
i=0

ϕi =
λ+ µv + λv2

λ

(1− v2k+2)(1− vh+1)(1− vh+2)

(1− v)(1− v2)(1− v2(h+k+1)+2)

and

k∑
i=1

ϕ−i =
λ+ µv + λv2

λ

v(1− v2h+2)(1− vk)(1− vk+1)

(1− v)(1− v2)(1− v2(h+k+1)+2)
.

The sum leads to the generating function of all walks that live in the strip:

h∑
i=0

ϕi +
k∑
i=1

ϕ−i =
λ+µv+λv2

λ

1− vh+1− vk+1+ v2h+k+3+ v2k+h+3− v2h+2k+4

(1− v)2(1− v2(h+k+1)+2)
. (1)

Now we let k →∞ and get the generating function of paths with maximum ≤ 2h+ 1
(original paths, even number of steps).

M [≤2h+1](z) =
(λ+ µv + λv2)(1− vh+1)

λ(1− v)2
.

The limit for h→∞ leads to all paths:

1

1− z
=

(λ+ µv + λv2)

λ(1− v)2
.

Taking differences, we find the generating function of paths with maximum > 2h+ 1:

M [>2h+1](z) =
(λ+ µv + λv2)vh+1

λ(1− v)2
.

Now we move to the more tricky case that the maximum is ≤ 2h. It basically means
≤ h for the modified path, but with a twist. The probability for a level step at the top



TWO-PERIODIC RANDOM WALKS 5

level is β2, not the usual µ. The system to be solved is

1− β2z −λz
−λz 1− µz −λz

−λz 1− µz −λz
. . .
−λz 1− µz −λz

−λz 1− µz −λz
−λz 1− µz





ϕh
ϕh−1

...
ϕ0
...

ϕ−(k−1)
ϕ−k


=



0
0
...
1
...
0
0


.

For that, we need the determinants

bi =

∣∣∣∣∣∣∣∣∣∣

1− β2z −λz
−λz 1− µz −λz

. . .
−λz 1− µz −λz

−λz 1− µz

∣∣∣∣∣∣∣∣∣∣
with i rows. Expanding with respect to the first row leads to

bi = (1− β2z)ai−1 − (λz)2ai−2

=
1

1− v2
( λ

λ+ µv + λv2

)i[
1 +

α

β
v − α

β
v2i+1 − v2i+2

]
.

Hence, the solution can be written as

ϕi =
(λz)ibh−iak
bh+k+1

, i = 0, . . . , h,

ϕ−i =
(λz)ibhak−i
bh+k+1

, i = 0, . . . , k.

This leads to

ϕi = vi
λ+ µv + λv2

λ

1− v2k+2

1− v2

[
1 + α

β
v − α

β
v2h−2i+1 − v2h−2i+2

][
1 + α

β
v − α

β
v2h+2k+3 − v2h+2k+4

]
and

ϕ−i = vi
λ+ µv + λv2

λ

1− v2k−2i+2

1− v2

[
1 + α

β
v − α

β
v2h+1 − v2h+2

][
1 + α

β
v − α

β
v2h+2k+3 − v2h+2k+4

] .
By summing,

h∑
i=0

ϕi =
λ+ µv + λv2

λ

1− v2k+2

1− v2

∑h
i=0

[
(1 + α

β
v)vi − (α

β
+ v)v2h−i+1

][
1 + α

β
v − α

β
v2h+2k+3 − v2h+2k+4

]
=
λ+ µv + λv2

λ

(1− v2k+2)(1− vh+1)

(1− v)(1− v2)

[
(1 + α

β
v)− (α

β
+ v)vh+1

][
1 + α

β
v − α

β
v2h+2k+3 − v2h+2k+4

]
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and
k∑
i=1

ϕ−i =
λ+ µv + λv2

λ

v(1− vk)(1− vk+1)

(1− v)(1− v2)

[
(1 + α

β
v)− (α

β
+ v)v2h+1

][
1 + α

β
v − α

β
v2h+2k+3 − v2h+2k+4

] .
To simplify the computations, we let k →∞ already now and compute

M [≤2h](z) =
h∑
i=0

ϕi +
∞∑
i=1

ϕ−i =
λ+ µv + λv2

λ

(1− vh+1)

(1− v)(1− v2)

[
(1 + α

β
v)− (α

β
+ v)vh+1

]
(1 + α

β
v)

+
λ+ µv + λv2

λ

v

(1− v)(1− v2)

[
(1 + α

β
v)− (α

β
+ v)v2h+1

]
(1 + α

β
v)

=
λ+ µv + λv2

λ

[
(1 + α

β
v)− 1

β
vh+1

]
(1 + α

β
v)(1− v)2

.

The limit h→∞ is again

λ+ µv + λv2

λ

1

(1 + α
β
v)(1− v)2

(
1 +

α

β
v
)

=
λ+ µv + λv2

λ

1

(1− v)2
,

which is a good check. Taking differences, we find

M [>2h](z) =
(λ+ µv + λv2)vh+1

λ(β + αv)(1− v)2
.

Recall that

M [>2h+1](z) =
(λ+ µv + λv2)vh+1

λ(1− v)2
.

From this we find immediately the generating function of the expectations:

E(z) =
∑
h≥0

M [>h](z) =
∑
h≥0

M [>2h](z) +
∑
h≥0

M [>2h+1](z)

=
λ+ µv + λv2

λ(1 + v)2

[
1

β + αv
+ 1

]
v

1− v

=
v(λ+ µv + λv2)(1 + β + αv)

λ(β + αv)(1− v)3

=
v(α + βv)(1 + β + αv)

λ(1− v)3

=
2

λ(1− v)3
− 4− α
λ(1− v)2

+
2− α2

λ(1− v)
− 1 .

Before we engage into the study of paths with an odd number of steps, let us get an
explicit expression for the expectation. We will use the notion of (weighted) trinomial
coefficients [2] (

n;λ, µ, λ

k

)
= [vk](λ+ µv + λv2)n.
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Then

EMax2n = [zn]E(z)

=
1

2πi

∮
dz

zn+1

[
2

λ(1− v)3
− 4− α
λ(1− v)2

+
2− α2

λ(1− v)
− 1

]
=

1

2πi

∮
(λ+ µv + λv2)n−1λ(1− v2)

vn+1

[
2

λ(1− v)3
− 4− α
λ(1− v)2

+
2− α2

λ(1− v)
− 1

]
dv

= [vn] (λ+ µv + λv2)n−1 (1 + v)

[
2

(1− v)2
− 4− α

1− v
+ (2− α2)

]
− λ(1− v2)

= [vn] (λ+ µv + λv2)n−1

[∑
k≥1

[
4kvk − 2(3− α)

]
vk + (2− α2)v + λv2

]

= λ

(
n− 1;λ, µ, λ

n− 2

)
+ (α + λ)

(
n− 1;λ, µ, λ

n− 1

)
+

n−1∑
k=1

(
n− 1;λ, µ, λ

n− 1− k

)
(4k − 2β) .

Further essential simplifications seem to be possible only for special values of α, in
particular the standard case α = β = 1

2
.

Note that the above computation was equivalent to the use of the Lagrange inversion
formula.

Odd number of steps. Let us start with the easy case of paths bounded from above
by 2h + 1. It means that the modified path is bounded from above by h, and an
additional step at the end cannot bring the path to a level larger than 2h+ 1. Thus

M
[≤2h+1]
odd =

∑
i≤h

ϕi

is also the generating function of paths of length 2n+1, bounded from above by 2h+1.
Now, we consider paths bounded from above by 2h. Their enumeration was achieved

as ∑
i≤h

ϕi

(with ϕ different from before). Now an additional step can be done in almost all
situations. The only exception is, that, when the path has ended on level h (original
path on level 2h), an up-step is forbidden. Thus, the quantity αϕh has to be subtracted,
leading to

M
[≤2h]
odd =

∑
i≤h

ϕi − αϕh.

Thus

M
[≤2h+1]
odd = M [≤2h+1](z) =

(λ+ µv + λv2)(1− vh+1)

λ(1− v)2
.

Further,

M
[>2h+1]
odd = M [>2h+1](z) =

(λ+ µv + λv2)vh+1

λ(1− v)2
.
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For the other instance,

M
[≤2h]
odd = M [≤2h](z)− αvhλ+ µv + λv2

λ

1

1 + α
β
v
.

Therefore

M
[>2h]
odd = M [>2h](z) =

(λ+ µv + λv2)vh+1

λ(β + αv)(1− v)2
+

(λ+ µv + λv2)vh

β + αv

=
(λ+ µv + λv2)2vh

λ(β + αv)(1− v)2
.

From this we find immediately the generating function of the expectations:

Eodd(z) =
∑
h≥0

M
[>h]
odd (z) =

∑
h≥0

M
[>2h]
odd (z) +

∑
h≥0

M
[>2h+1]
odd (z)

=
λ+ µv + λv2

λ(1− v)2

[
λ+ µv + λv2

β + αv
+ v

]
1

1− v

=
λ+ µv + λv2

λ(1− v)3
[α + βv + v] =

λ+ µv + λv2

λ(1− v)3
[α− αv + 2v]

=
λ+ µv + λv2

λ

[
2v

(1− v)3
+

α

(1− v)2

]
.

The coefficients of this generating function can again be written as a linear combination
of trinomial coefficients:

[zn]Eodd(z) = EMax2n+1 = α

(
n;λ, µ, λ

n

)
+

n∑
k=1

(
n;λ, µ, λ

n− k

)
(4k − 2β) .

Asymptotic evaluation. Let us now move to asymptotics. In order to apply singu-
larity analysis of generating functions [4, 5], we need the local expansion around z = 1.
Since

v ∼ 1−
√

1−z
λ

+
1−z
2λ
− 4λ+1

8

(
1−z
λ

)3/2

+ · · ·

↔ 1− z ∼ λ(1− v)2 + λ(1− v)3 + λ(1− λ)(1− v)4 + · · ·
we get

E(z) =
2

λ(1− v)3
− 4− α
λ(1− v)2

+
2− α2

λ(1− v)
− 1

∼ 2
√
λ

(1− z)3/2
− 1− α

1− z
+

1− 8λ

4
√
λ(1− z)1/2

+
1− 2α

2

+
1− 16λ2

64λ3/2
(1− z)1/2 +O

(
(1− z)3/2

)
.

The same procedure for Eodd(z) furnishes

Eodd(z) =
2

λ(1− v)3
− 4− α
λ(1− v)2

+
2 + α− 2α2

λ(1− v)
+ α− 2
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∼ 2
√
λ

(1− z)3/2
− 1− α

1− z
+

1− 4λ

4
√
λ(1− z)1/2

+
1− 8λ+ 16λ2

64λ3/2
(1− z)1/2 +O

(
(1− z)3/2

)
.

These local expansions of E(z) and Eodd(z) could be translated into the asymptotic
expansions of the coefficients of zn, corresponding to the asymptotic expected maximum
after 2n and 2n + 1 steps, respectively, of the original path. But, observing that the
generating function G(x) of the expected maximum of the original path is E(x2) +
xEodd(x

2), we can even derive explicit expressions for the expected maximum after n
steps of the original path, as n → ∞. Since E(z) and Eodd(z) have their singularities
at z = 1, G(x) has its singularities at x = 1 and x = −1. So we only have to expand
G(x) = E(x2) + xEodd(x

2) around x = 1 and x = −1, add up, and translate (by
applying the transfer theorem from singularity analysis of generating functions, see
[4]) into the asymptotic expansion of the coefficient of xn. Proceeding in that way we
get

G(x) =
2
√
λ√
2

(1− x)−3/2 − (1− α)(1− x)−1 +
1− 5λ

2
√

2λ
(1− x)−1/2 +

1− 2α

2

− 1− 2λ− 7λ2

16
√

2λ3/2
(1− x)1/2 +O

(
(1− x)3/2

)
, as x→ 1,

and

G(x) =
−α
2

+
λ2

2
√

2λ3/2
(1 + x)1/2 − 1− α

4
(1 + x) +O

(
(1 + x)3/2

)
, as x→ −1.

Hence the expected maximum EMaxn of the original path after n steps is

EMaxn = [xn]G(x) =
4
√
λ
√
n√

2π
− (1− α) +

1− 2λ

2
√
λ
√

2π
√
n
− 4λ2 + 4λ− 1

32λ3/2
√

2π n3/2

− (−1)n
√
λ

4
√

2π n3/2
+O

(
n−5/2

)
.

(2)

This refines a recent result of Böhm and Hornik [1]. Our additional terms show that
the expected maximum actually is different for paths of even and odd length; these
differences occur only for lower order terms.

We summarize our findings.

Theorem 1. The generating functions E(z) resp. Eodd(z) of the maximum of the two-
periodic paths with weights α and β after 2n resp. 2n+ 1 random steps is given by

E(z) =
v(α + βv)(1 + β + αv)

λ(1− v)3
,

Eodd(z) =
(λ+ µv + λv2)(α + βv + v)

λ(1− v)3
,
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with z =
v

λ+ µv + λv2
. The expected value of the maximum after n random steps is

given by

EMaxn ∼
4
√
λ
√
n√

2π
,

with more terms provided in (2).

3. The two-sided maximum

In this section we consider the two-sided maximum of a walk (0, s0), (1, s1), . . . ,
(n, sn), defined to be max0≤i≤n{|si|}. We have to find (probability) generating functions
for the walks that are bounded by h. As before, it has to be distinguished whether
h is even or odd. Let us start with the easy case that the walk lives in the strip
−(2h + 1) ≤ · · · ≤ 2h + 1. Then the computations from the previous section can be
used, with h = k. From (1) we find

T [≤2h+1] =
h∑

i=−h

ϕi =
λ+ µv + λv2

λ

(1− vh+1)2

(1− v)2(1 + v2h+2)

and

T [>2h+1] =
λ+ µv + λv2

λ(1− v)2
2vh+1

1 + v2h+2
.

Now we move to the instance −2h ≤ · · · ≤ 2h. Here, we have to do some independent
computations. We need some more determinants. Let

b∗i =

∣∣∣∣∣∣∣∣∣∣

1− µz −λz
−λz 1− µz −λz

. . .
−λz 1− µz −λz

−λz 1− α2z

∣∣∣∣∣∣∣∣∣∣
with i rows. Then

b∗i = bi
∣∣
α↔β =

1

1− v2
( λ

λ+ µv + λv2

)i[
1 +

β

α
v − β

α
v2i+1 − v2i+2

]
.

Let

ci =

∣∣∣∣∣∣∣∣∣∣

1− β2z −λz
−λz 1− µz −λz

. . .
−λz 1− µz −λz

−λz 1− α2z

∣∣∣∣∣∣∣∣∣∣
with i rows. Then

ci = (1− α2z)bi−1 − λ2z2bi−2

=
1− v2i

1− v2
( λ

λ+ µv + λv2

)i−1
.
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With these determinants, the generating functions, leading to level i with −h ≤ i ≤ h,
can be expressed:

ϕi =
(λz)ibh−ib

∗
h

c2h+1

, i = 0, . . . , h,

ϕ−i =
(λz)ib∗h−ibh

c2h+1

, i = 0, . . . , h.

This leads to

ϕi = vi

[
1 + α

β
v − α

β
v2(h−i)+1 − v2(h−i)+2

][
1 + β

α
v − β

α
v2h+1 − v2h+2

]
(1− v2(2h+1))(1− v2)

,

ϕ−i = ϕi

∣∣∣
α↔β

,

and

h∑
i=0

ϕi =

[
1 + β

α
v − β

α
v2h+1 − v2h+2

]
(1− v2(2h+1))(1− v2)

h∑
i=0

vi
[
1 +

α

β
v − α

β
v2(h−i)+1 − v2(h−i)+2

]

=
[(1 + β

α
v)− v2h+1(β

α
+ v)][(1 + α

β
v)− vh+1(α

β
+ v)]

(1− v2(2h+1))(1− v)(1− v2)
(1− vh+1).

Likewise,

h∑
i=0

ϕ−i =
[(1 + α

β
v)− v2h+1(α

β
+ v)][(1 + β

α
v)− vh+1(β

α
+ v)]

(1− v2(2h+1))(1− v)(1− v2)
(1− vh+1).

Then

T [≤2h] =
h∑

i=−h

ϕi =
h∑
i=0

ϕi +
h∑
i=0

ϕ−i − ϕ0

=
(λ+ µv + λv2)(1− v4h+2)− (1 + v)vh+1(1− v2h+1)

λ(1− v4h+2)(1− v)2

=
(λ+ µv + λv2)

λ(1− v)2
− (1 + v)vh+1

λ(1 + v2h+1)(1− v)2
.

Therefore

T [>2h] =
(1 + v)vh+1

λ(1 + v2h+1)(1− v)2
.

This leads to the generating function of the expected values of the two-sided maximum:

E(z) =
∑
h≥0

T [>h] =
∑
h≥0

T [>2h] +
∑
h≥0

T [>2h+1]

=
(1 + v)

λ(1− v)2

∑
h≥0

vh+1

1 + v2h+1
+

2(λ+ µv + λv2)

λ(1− v)2

∑
h≥1

vh

1 + v2h
.
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Odd number of steps. This will now be quite similar to before. There are exceptional
cases for even 2h, which means h for the modified path, and an up-step at level h and
a down-step at level −h must be excluded. This leads to slightly modified generating
functions.

T
[≤2h+1]
odd = T [≤2h+1],

T
[≤2h]
odd = T [≤2h] − αϕh − βϕ−h.

Therefore

T
[≤2h+1]
odd = T [≤2h+1] =

λ+ µv + λv2

λ

(1− vh+1)2

(1− v)2(1 + v2h+2)
and also

T
[>2h+1]
odd = T [>2h+1] =

λ+ µv + λv2

λ(1− v)2
2vh+1

1 + v2h+2
,

T [≤2h] =
λ+ µv + λv2

λ(1− v)2
− (1 + v)vh+1

λ(1 + v2h+1)(1− v)2
.

We have

ϕh = vh

[
1 + α

β
v − α

β
v − v2

][
1 + β

α
v − β

α
v2h+1 − v2h+2

]
(1− v2(2h+1))(1− v2)

= vh
(1− v2)

[(
1− v2h+2

)
+ β

α
v
(
1− v2h

)]
(1− v2(2h+1))(1− v2)

= vh
(
1− v2h+2

)
+ β

α
v
(
1− v2h

)
1− v2(2h+1)

and further

αϕh + βϕ−h = αvh
(
1− v2h+2

)
+ β

α
v
(
1− v2h

)
1− v2(2h+1)

+ βvh

(
1− v2h+2

)
+ α

β
v
(
1− v2h

)
1− v2(2h+1)

=
vh

1− v2(2h+1)

[
(α + β)(1− v2h+2) + (α + β)v(1− v2h)

]
=

vh

1− v2(2h+1)

[
(1 + v)− v2h+1(1 + v)

]
=

(1 + v)vh

1 + v2h+1
.

Thus

T
[≤2h]
odd =

λ+ µv + λv2

λ(1− v)2
− (1 + v)vh+1

λ(1 + v2h+1)(1− v)2
− (1 + v)vh

1 + v2h+1

=
λ+ µv + λv2

λ(1− v)2
− (1 + v)vh(λ+ µv + λv2)

λ(1 + v2h+1)(1− v)2

=
λ+ µv + λv2

λ(1− v)2

[
1− (1 + v)vh

1 + v2h+1

]
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=
λ+ µv + λv2

λ(1− v)2
· 1− vh − vh+1 + v2h+1

1 + v2h+1

=
(λ+ µv + λv2)(1− vh)(1− vh+1)

λ(1− v)2(1 + v2h+1)
.

This leads to

T
[>2h+1]
odd =

2(λ+ µv + λv2)vh+1

λ(1− v)2(1 + v2h+2)
= T [>2h+1],

T
[>2h]
odd =

(λ+ µv + λv2)(1 + v)vh

λ(1− v)2(1 + v2h+1)
.

Eodd(z) =
∑
h≥0

T
[>h]
odd =

∑
h≥0

T
[>2h]
odd +

∑
h≥0

T
[>2h+1]
odd

=
(λ+ µv + λv2)(1 + v)

λ(1− v)2

∑
h≥0

vh

1 + v2h+1
+

2(λ+ µv + λv2)

λ(1− v)2

∑
h≥1

vh

1 + v2h
.

Asymptotic evaluation. Let us now move to asymptotics. Regarding the series
(harmonic sums) in the expressions of E(z) and Eodd(z) this is more difficult than
before. To deal with them let us introduce

σ1 =
∑
h≥0

vh+
1
2

1 + v2h+1
, σ2 =

∑
h≥1

vh

1 + v2h
.

Using σ1, σ2 we get

E(z) =
1

λ(1− v)2
[
(1 + v)

√
vσ1 + 2(λ+ µv + λv2)σ2

]
,

Eodd(z) =
λ+ µv + λv2

λ(1− v)2

[
1 + v√
v
σ1 + 2σ2

]
.

Note that

σ1 =
∑
h≥0

∑
k≥0

(−1)kv(h+
1
2
)(2k+1) and σ2 =

∑
h≥1

∑
k≥0

(−1)kvh(2k+1).

For the further study, one sets v = e−t and performs the Mellin transform [3]:

M
∑
h≥0

∑
k≥0

(−1)ke−t(h+
1
2
)(2k+1) = Γ(s)

∑
h≥0

∑
k≥0

(−1)k(h+ 1
2
)−s(2k + 1)−s

= Γ(s)
∑
h≥0

(h+ 1
2
)−s
∑
k≥0

(−1)k(2k + 1)−s

= Γ(s)ζ(s, 1
2
)

[∑
k≥0

(4k + 1)−s −
∑
k≥0

(4k + 3)−s
]

= 4−sΓ(s)ζ(s, 1
2
)
[
ζ(s, 1

4
)− ζ(s, 3

4
)
]
,
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M
∑
h≥1

∑
k≥0

(−1)ke−th(2k+1) = Γ(s)
∑
h≥1

∑
k≥0

(−1)kh−s(2k + 1)−s

= 4−sΓ(s)ζ(s)
[
ζ(s, 1

4
)− ζ(s, 3

4
)
]
.

Here, we used the Hurwitz’ zeta function

ζ(s, a) =
∑
n≥0

1

(n+ a)s
.

A reference for many of its properties is the classic book [8].

The method consists in applying the inverse Mellin transform, which is given as a
contour integral, and evaluating it (asymptotically) by computing residues of

4−sΓ(s)ζ(s, 1
2
)
[
ζ(s, 1

4
)− ζ(s, 3

4
)
]
t−s

and

4−sΓ(s)ζ(s)
[
ζ(s, 1

4
)− ζ(s, 3

4
)
]
t−s.

The contour of integration is a vertical line that is to the right of possible singularities.
We can take, for instance <s = 2. The general strategy is to move the line of integration
to the left and collect residues. The error comes from the new vertical line, i. e., if the
line is moved to <c, then we get an error O (t−c). Sometimes, there are also logarithmic
terms involved in the error term, but not in our instance. See [3] for details.

The function β(s) = ζ(s, 1
4
) − ζ(s, 3

4
) is an entire function, since the poles cancel

out. Thus, we encounter a simple pole at s = 1, originating from ζ(s) and ζ(s, 1
2
),

respectively. The respective residues are π
4t

in both instances.

The Gamma function has simple poles at 0,−1,−2, . . . But, since ζ(s, 1
2
) = 0 for

s = 0,−2,−4, . . . , the pertaining poles of the Gamma function are compensated by the
zeroes of ζ(s, 1

2
) and σ1 has no residues at these points. The situation is quite similar

for σ2, since ζ(s) = 0 for s = −2,−4,−6, . . . Only the pole in s = 0 survives. The
pertaining residue of σ2 is −1/4, since ζ(0) = −1/2 and β(0) = 1/2.

Also the poles at s = −1,−3, . . . are compensated because β(−(2m−1)) = 0 for
m = 1, 2, 3, . . . . This can easily be shown by using the well-known relation

ζ(−n, x) = −Bn+1(x)

n+ 1
.

But the Bernoulli polynomials Bn(x) are symmetric around x = 1
2
,

Bn(1
2

+ x) = (−1)nBn(1
2
− x),

which entails ζ(−(2m−1), 1/4) − ζ(−(2m−1), 3/4) = 0. So taking all residues into
acount we finally obtain

σ1 =
π

4t
+O

(
tM
)

and σ2 =
π

4t
− 1

4
+O

(
tM
)

for arbitrarily large M , and we may replace

σ1 ∼ −
π

4 ln v
and σ2 ∼ −

π

4 ln v
− 1

4
,
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after reverting back to v, and the final error terms come from the other factors and are
related to the number of terms that we compute.

As in the one-sided case E(z) and Eodd(z) have their singularities at v = 1, so we
may proceed as in the preceding section. Expanding E(z) around v = 1 and translating
to z = 1 yields (these computations have been done with a computer)

E(z) =
π

λ(1− v)3
− 1 + 3π

2λ(1− v)2
+

24πλ+ 23π + 24

48λ(1− v)
+
−24πλ− 48λ+ π

96λ

− π(480λ− 71)(1− v)

11520λ
− π(480λ− 71)(1− v)2

23040λ
+O

(
(1− v)3

)
=

π
√
λ

(1− z)3/2
− 1

2(1− z)
− π(48λ− 5)

48
√
λ
√

1− z

+
π (1440λ2 − 360λ− 49)

√
1− z

11520λ3/2
+O

(
(1− z)3/2

)
.

The same procedure for Eodd(z) furnishes

Eodd(z) =
π

λ(1− v)3
− 1 + 3π

2λ(1− v)2
+

48πλ+ 23π + 24

48λ(1− v)
+
−48πλ− 48λ+ π

96λ

− (240λ− 71)π(1− v)

11520λ
− (240λ− 71)π(1− v)2

23040λ
+O

(
(1− v)3

)
=

√
λπ

(1− z)3/2
− 1

2(1− z)
+

5π − 24λπ

48
√
λ
√

1− z

+
(1440πλ2 − 600πλ+ 49π)

√
1− z

11520λ3/2
+O

(
(1− z)3/2

)
.

The local expansions of G(x) = E(x2) + xEodd(x
2) around x = 1 and x = −1 are

G(x) =
π
√
λ√
2

(1− x)−3/2 − 1

2
(1− x)−1 − 5π(6λ− 1)

24
√

2
√
λ

(1− x)−1/2

+
π(630λ2 − 30λ− 49)

2880
√

2λ3/2
(1− x)1/2 +O

(
(1− x)3/2

)
, as x→ 1,

and

G(x) = −1

4
+
π(4λ− 1)

16
√

2
√
λ

(1 + x)1/2 − 1 + x

8
+O

(
(1 + x)3/2

)
, as x→ −1.

Hence the expected two-sided maximum EMaxn of the original path after n steps is

EMaxn = [xn]G(x)

=
√

2π
√
λ
√
n− 1

2
+

√
2π (5− 12λ)

48
√
λ
√
n

+

√
2π (49− 120λ− 360λ2)

11520λ3/2 n3/2

+ (−1)n
√

2π(1− 4λ)

64
√
λn3/2

+O
(
n−5/2

)
.

(3)

We summarize our findings in the following theorem.
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Theorem 2. The generating functions E(z) resp. Eodd(z) of the two-sided maximum
of the two-periodic paths with weights α and β after 2n resp. 2n + 1 random steps is
given by

E(z) =
1

λ(1− v)2

[
(1 + v)

∑
h≥0

vh+1

1 + v2h+1
+ 2(λ+ µv + λv2)

∑
h≥1

vh

1 + v2h

]
,

Eodd(z) =
(λ+ µv + λv2)

λ(1− v)2

[
(1 + v)

∑
h≥0

vh

1 + v2h+1
+ 2

∑
h≥1

vh

1 + v2h

]
,

with z =
v

λ+ µv + λv2
. The expected value of the two-sided maximum after n random

steps is given by

EMaxn ∼
√

2π
√
λ
√
n,

with more terms provided in (3).

4. Conclusion

Our combinatorial analysis of two-periodic random walks followed the scheme: re-
duction to the study of Motzkin paths, where n steps mean 2n steps in the original
walks. For walks of odd length a small modification is necessary. The generating
functions of interest were computed by solving a linear system with Cramer’s rule. A
suitable substitution made the expressions manageable. Asymptotics follow from sin-
gularity analysis of generating functions, in one case with a Mellin transform argument
as a preliminary step. Computer algebra was very helpful, but human interaction was
essential.

We hope that we succeeded to convince the reader of the advantages of our method.
Only two parameters were studied: one- and two-sided maximum. We plan to come
back to the subject in other publications by investigating other parameters, and also
different random walk models, i. e., walks that must return to the x-axis after n steps,
and non-negative walks with or without prescribed endpoints.
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