ON COMBINATORIAL IDENTITIES OF ENGBERS AND STOCKER

HORST ALZER AND HELMUT PRODINGER

Abstract. We extend two combinatorial identitites published by Engbers and Stocker in 2016. Among others, we prove that if b, n and r are integers such that $b \geq 1$ and $n-1 \geq r \geq 0$, then

$$
\sum_{k=0}^{r}\binom{r}{k}^{2}\binom{k+n}{2 r+b}=\sum_{k=0}^{n-1}\binom{k}{r}^{2}\binom{n-k}{b-1}
$$

The special case $b=1$ is due to Engbers and Stocker.

2010 Mathematics Subject Classification. 0A15, 0A19
Keywords. Combinatorial identities, generating functions

1. Introduction and statement of results

The work on this note has been inspired by an interesting research paper published by Engbers and Stocker [1] in 2016. The authors use combinatorial techniques to show that the identities

$$
\begin{equation*}
\sum_{k=0}^{r}\binom{r}{k}^{2}\binom{k+n}{2 r+1}=\sum_{k=r}^{n-1}\binom{k}{r}^{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=r}^{2 r}\binom{2(k-r)}{k-r}\binom{k}{2 r-k}\binom{n}{k+1}=\sum_{k=r}^{n-1}\binom{k}{r}^{2} \tag{2}
\end{equation*}
$$

are valid for all integers n and r with $n-1 \geq r \geq 0$. Actually, they prove a bit more. They present summation formulas involving $\sum_{k=r}^{n-1}\binom{k}{r}^{s}$, where s is a natural number. The identities (1) and (2) turn out to be the most attractive special cases.

Here, we provide a different kind of extension. We study the sums

$$
S_{r, n}(b)=\sum_{k=0}^{r}\binom{r}{k}^{2}\binom{k+n}{2 r+b}
$$

and

$$
T_{r, n}(b)=\sum_{k=r}^{2 r}\binom{2(k-r)}{k-r}\binom{k}{2 r-k}\binom{n}{k+b}
$$

where b is an integer. In the next sections we use the concept of generating functions to prove new extensions of (1) and (2). Our extension of (1) reads as follows.

Theorem 1. Let b, n and r be integers with $n-1 \geq r \geq 0$.
(i) If $b \geq 1$, then

$$
S_{r, n}(b)=\sum_{k=r}^{n-1}\binom{k}{r}^{2}\binom{n-k-1}{b-1}
$$

(ii) If $b \leq 0$, then

$$
S_{r, n}(b)=\sum_{k=0}^{-b}(-1)^{-b-k}\binom{k+n}{r}^{2}\binom{-b}{k} .
$$

The case $b=1$ gives (1) whereas the special cases $b=0$ and $b=-1$ lead to the elegant identities

$$
\begin{equation*}
\sum_{k=0}^{r}\binom{r}{k}^{2}\binom{k+n}{2 r}=\binom{n}{r}^{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{r}\binom{r}{k}^{2}\binom{k+n}{2 r-1}=\binom{n+1}{r}^{2}-\binom{n}{r}^{2} . \tag{4}
\end{equation*}
$$

The sum

$$
U_{r, n}(b)=\sum_{k=1}^{r}\binom{r}{k-1}\binom{r}{k}\binom{k+n}{2 r+b}
$$

is closely related to $S_{r, n}(b)$. We apply

$$
2\binom{r}{k-1}\binom{r}{k}=\binom{r+1}{k}^{2}-\binom{r}{k-1}^{2}-\binom{r}{k}^{2}
$$

and obtain the representation

$$
\begin{equation*}
U_{r, n}(b)=\frac{1}{2}\left(S_{r+1, n}(b-2)-S_{r, n+1}(b)-S_{r, n}(b)\right) \tag{5}
\end{equation*}
$$

Using (5) with $b=1,0,-1$, respectively, we conclude from Theorem 1 that the following counterparts of (1), (3) and (4) are valid:

$$
\begin{gathered}
\sum_{k=1}^{r}\binom{r}{k-1}\binom{r}{k}\binom{k+n}{2 r+1}=\binom{n}{r}\binom{n}{r+1}-\sum_{k=r}^{n-1}\binom{k}{r}^{2}, \\
\sum_{k=1}^{r}\binom{r}{k-1}\binom{r}{k}\binom{k+n}{2 r}=\binom{n}{r-1}\binom{n+1}{r+1}, \\
\sum_{k=1}^{r}\binom{r}{k-1}\binom{r}{k}\binom{k+n}{2 r-1}=\binom{n+1}{r-1}\binom{n+2}{r+1}-\binom{n}{r-1}\binom{n+1}{r+1} .
\end{gathered}
$$

In Section 3, we prove the following generalization of (2).
Theorem 2. Let b, n and r be integers with $n-1 \geq r \geq 0$.
(i) If $b \geq 1$, then

$$
T_{r, n}(b)=\sum_{k=r}^{n-1}\binom{k}{r}^{2}\binom{n-k-1}{b-1}
$$

(ii) If $b \leq 0$, then

$$
T_{r, n}(b)=\sum_{k=0}^{-b}(-1)^{-b-k}\binom{k+n}{r}^{2}\binom{-b}{k}
$$

In particular, the special cases $b=1$ and $b=0,-1$ lead to (2) and

$$
\begin{gathered}
\sum_{k=r}^{2 r}\binom{2(k-r)}{k-r}\binom{k}{2 r-k}\binom{n}{k}=\binom{n}{r}^{2}, \\
\sum_{k=r}^{2 r}\binom{2(k-r)}{k-r}\binom{k}{2 r-k}\binom{n}{k-1}=\binom{n+1}{r}^{2}-\binom{n}{r}^{2},
\end{gathered}
$$

respectively.

2. Proof of Theorem 1

We define

$$
F_{b}(x, u)=\sum_{n, r \geq 0} S_{r, n}(b) x^{n} u^{r}
$$

and

$$
q_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2} x^{k}
$$

Then, see [3, pp. 78, 81],

$$
\sum_{n \geq 0} u^{n} q_{n}(x)=\frac{1}{\sqrt{1-2(1+x) u+(1-x)^{2} u^{2}}}
$$

We obtain

$$
\sum_{n \geq 0} x^{n} \sum_{k=0}^{r}\binom{r}{k}^{2}\binom{k+n}{2 r}=\sum_{k=0}^{r}\binom{r}{k}^{2} \frac{x^{2 r-k}}{(1-x)^{2 r+1}}=\frac{x^{r}}{(1-x)^{2 r+1}} q_{r}(x)
$$

and furthermore

$$
\begin{aligned}
F_{0}(x, u) & =\sum_{r \geq 0} u^{r} \sum_{n \geq 0} x^{n} \sum_{k=0}^{r}\binom{r}{k}^{2}\binom{k+n}{2 r}=\frac{1}{1-x} \sum_{r \geq 0}\left(\frac{u x}{(1-x)^{2}}\right)^{r} q_{r}(x) \\
& =\frac{1}{1-x} \frac{1}{\sqrt{1-2(1+x) \frac{u x}{(1-x)^{2}}+(1-x)^{2} \frac{u^{2} x^{2}}{(1-x)^{4}}}} \\
& =\frac{1}{\sqrt{1-2(1+u) x+(1-u)^{2} x^{2}}} \\
& =\sum_{n, r \geq 0}\binom{n}{r}^{2} x^{n} u^{r} .
\end{aligned}
$$

Comparing the coefficients of $x^{n} u^{r}$ we find the identity

$$
S_{r, n}(0)=\sum_{k=0}^{r}\binom{r}{k}^{2}\binom{k+n}{2 r}=\binom{n}{r}^{2} .
$$

Now, let $b \geq 1$. Applying the following variant of the Vandermonde formula, see [2, p. 169],

$$
\binom{k+n}{2 r+b}=\sum_{j=0}^{n-1}\binom{k+j}{2 r}\binom{n-j-1}{b-1} \quad(0 \leq k \leq r)
$$

we obtain

$$
\begin{aligned}
S_{r, n}(b) & =\sum_{k=0}^{r}\binom{r}{k}^{2} \sum_{j=0}^{n-1}\binom{k+j}{2 r}\binom{n-j-1}{b-1} \\
& =\sum_{j=0}^{n-1}\binom{n-j-1}{b-1} S_{r, j}(0)=\sum_{j=0}^{n-1}\binom{n-j-1}{b-1}\binom{j}{r}^{2} .
\end{aligned}
$$

Next, let $b \leq 0$. Using the Vandermonde type identity, see [2, p. 169],

$$
\binom{k+n}{2 r+b}=\sum_{j=0}^{-b}\binom{-b}{j}\binom{k+j+n}{2 r}(-1)^{-b-j}
$$

we get

$$
\begin{aligned}
S_{r, n}(b) & =\sum_{k=0}^{r}\binom{r}{k}^{2} \sum_{j=0}^{-b}\binom{-b}{j}\binom{k+j+n}{2 r}(-1)^{-b-j} \\
& =\sum_{j=0}^{-b}\binom{-b}{j}(-1)^{-b-j} S_{r, j+n}(0)=\sum_{j=0}^{-b}\binom{-b}{j}(-1)^{-b-j}\binom{j+n}{r}^{2} .
\end{aligned}
$$

This completes the proof of Theorem 1.

3. Proof of Theorem 2

As before, we consider the bivariate generating function

$$
G_{b}(x, u)=\sum_{n, r \geq 0} T_{r, n}(b) x^{n} u^{r}
$$

We have, see [3, page 73]:

$$
\sum_{n \geq 0} u^{n} \sum_{0 \leq k \leq n / 2}\binom{2 k}{k}\binom{n}{2 k} x^{2 k}(1-2 x)^{n-2 k}=\frac{1}{\sqrt{[1-(1-2 x) u]^{2}-4 x^{2} u^{2}}}
$$

Next, we replace x by $\sqrt{x} /(1+2 \sqrt{x})$ and u by $(1+2 \sqrt{x}) u$. This leads to

$$
\sum_{n \geq 0} u^{n} \sum_{0 \leq k \leq n / 2}\binom{2 k}{k}\binom{n}{2 k} x^{k}=\frac{1}{\sqrt{(1-u)^{2}-4 x u^{2}}}
$$

We set $t=z /(1-z)$ and apply

$$
\sum_{k=r}^{2 r}\binom{2(k-r)}{k-r}\binom{k}{2 r-k} \sum_{n \geq 0}\binom{n}{k} z^{n}=\sum_{k=r}^{2 r}\binom{2(k-r)}{k-r}\binom{k}{2 r-k} \frac{z^{k}}{(1-z)^{k+1}}
$$

Then we obtain

$$
\begin{aligned}
G_{0}(z, u) & =\sum_{r \geq 0} u^{r} \sum_{k=r}^{2 r}\binom{2(k-r)}{k-r}\binom{k}{2 r-k} \frac{z^{k}}{(1-z)^{k+1}} \\
& =\frac{1}{1-z} \sum_{r \geq 0} u^{r} \sum_{k=r}^{2 r}\binom{2(k-r)}{k-r}\binom{k}{2 r-k} t^{k}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{1-z} \sum_{k \geq 0} \sum_{r \geq 0} u^{k-r}\binom{2 r}{r}\binom{k}{2 r} t^{k} \\
& =\frac{1}{1-z} \sum_{k \geq 0}(u t)^{k} \sum_{r \geq 0} u^{-r}\binom{2 r}{r}\binom{k}{2 r} \\
& =\frac{1}{1-z} \frac{1}{\sqrt{(1-u t)^{2}-4 u t^{2}}} \\
& =\frac{1}{\sqrt{1-2(1+u) z+(1-u)^{2} z^{2}}} \\
& =\sum_{n, r \geq 0}\binom{n}{r}^{2} z^{n} u^{r} .
\end{aligned}
$$

We compare the coefficients of $z^{n} u^{r}$ and find

$$
T_{r, n}(0)=\sum_{k=r}^{2 r}\binom{2(k-r)}{k-r}\binom{k}{2 r-k}\binom{n}{k}=\binom{n}{r}^{2} .
$$

Now, let $b \geq 1$. Using

$$
\binom{n}{k+b}=\sum_{j=0}^{n-1}\binom{j}{k}\binom{n-j-1}{b-1}
$$

leads to

$$
\begin{aligned}
T_{r, n}(b) & =\sum_{k=r}^{2 r}\binom{2(k-r)}{k-r}\binom{k}{2 r-k} \sum_{j=0}^{n-1}\binom{j}{k}\binom{n-j-1}{b-1} \\
& =\sum_{j=0}^{n-1}\binom{n-j-1}{b-1} T_{r, j}(0)=\sum_{j=0}^{n-1}\binom{n-j-1}{b-1}\binom{j}{r}^{2} .
\end{aligned}
$$

Next, let $b \leq 0$. Since

$$
\binom{n}{k+b}=\sum_{j=0}^{-b}\binom{-b}{j}\binom{j+n}{k}(-1)^{-b-j}
$$

we obtain

$$
\begin{aligned}
T_{r, n}(b) & =\sum_{k=r}^{2 r}\binom{2(k-r)}{k-r}\binom{k}{2 r-k} \sum_{j=0}^{-b}\binom{-b}{j}\binom{j+n}{k}(-1)^{-b-j} \\
& =\sum_{j=0}^{-b}\binom{-b}{j}(-1)^{-b-j} T_{r, j+n}(0)=\sum_{j=0}^{-b}\binom{-b}{j}(-1)^{-b-j}\binom{j+n}{r}^{2} .
\end{aligned}
$$

The proof of Theorem 2 is complete.

References

[1] J. Engbers, C. Stocker, Two combinatorial proofs of identities involving sums of powers of binomial coefficients, INTEGERS 16 (2016), \#A58.
[2] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, Reading, 1994.
[3] J. Riordan, Combinatorial Identities, Krieger, Huntington, 1979.
H. Alzer, Morsbacher Str. 10, 51545 Waldbröl, Germany

E-mail address: h.alzer@gmx.de
H. Prodinger, Department of Mathematical Sciences, Mathematics Division, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa

E-mail address: hproding@sun.ac.za

