
To appear in Anz. Österreich. Akad. Wiss. Math.-Natur. Kl.

THOMAS’ FAMILY OF THUE EQUATIONS OVER IMAGINARY

QUADRATIC FIELDS. II

CLEMENS HEUBERGER, ATTILA PETHŐ, AND ROBERT F. TICHY

Abstract. We completely solve the family of relative Thue equations

x
3 − (t − 1)x2

y − (t + 2)xy
2 − y

3 = µ,

where the parameter t, the root of unity µ and the solutions x and y are integers in the same
imaginary quadratic number field. This is achieved using the hypergeometric method for |t| ≥
53 and Baker’s method combined with a computer search using continued fractions for the
remaining values of t.

Let F be an irreducible form of degree at least 3 with integral coefficients and m be a nonzero
integer. Then the Diophantine equation

F (x, y) = m

is called a Thue equation in honor of Thue [10] who proved that it has only finitely many solutions
over the integers. Algorithms for solving single Thue equations over Z have been developed, see
Bilu and Hanrot [1].

Starting with Thomas [9] in 1990, several families of parametrized Thue equations (of positive
discriminant) have been solved, cf. the surveys [4, 3].

In the last years, a few parametrized families of relative Thue equations where the parameter
and the solutions are elements of an imaginary quadratic number field have been studied by the
authors [6], by Ziegler [11, 12], and by Jadrijević and Ziegler [7].

In [6], the parametrized family of Thue equations

(1) x3 − (t − 1)x2y − (t + 2)xy2 − y3 = µ, x, y ∈ ZQ(t), t imaginary quadratic integer,

µ a root of unity in ZQ(t)

has been studied. This is the family that Thomas [9] and Mignotte [8] solved completely in the
rational integer case. In [6], all solutions for |t| > 3.023·109 have been found using Baker’s method.
Furthermore, all solutions for Re t = −1/2 were claimed to be listed. However, the proof of [6,
Theorem 3] is incorrect (more precisely, the argument for excluding the possibility Λ = 0 in [6,
Section 7] is invalid) and some solutions are missing in [6, Table 2].

By combining the hypergeometric method due to Thue and Siegel (for values |t| ≥ 53) and
lower bounds for linear forms in logarithms (“Baker’s method”) together with a computer search
(using continued fraction expansions) for |t| < 53, the Diophantine equation (1) can be solved
completely for all values of t.

The details are discussed in the forthcoming paper [2]. The purpose of this note is to announce
the corrected and complete result:
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Theorem. Let t be an integer in an imaginary quadratic number field, t /∈ {(−1 ± 3
√
−3)/2},

ZQ(t) be the ring of integers of Q(t),

Ft(X, Y ) = X3 − (t − 1)X2Y − (t + 2)XY 2 − Y 3 ∈ ZQ(t)[X, Y ],

and µ be a root of unity in Q(t).
Then all solutions (x, y) ∈ Z2

Q(t) to

(2) Ft(x, y) = µ

are listed in Table 1 (solutions independent of t) and in the online Table [5] (solutions for specific
values of t). A short summary of these 732 “sporadic” solutions is given in Table 2. The sporadic
solutions with Re t = −1/2 are listed in Table 3.

x y µ
0 1 −1

−1 0 −1
1 −1 −1
0 −1 1

−1 1 1
1 0 1
0 −i −i

−i i −i

x y µ
i 0 −i
0 i i

−i 0 i
i −i i
0 −ω3 −1
0 −1 + ω3 −1

−ω3 ω3 −1
1 − ω3 0 −1

x y µ
−1 + ω3 1 − ω3 −1

ω3 0 −1
0 1 − ω3 1
0 ω3 1

−ω3 0 1
1 − ω3 −1 + ω3 1

−1 + ω3 0 1
ω3 −ω3 1

Table 1. Solutions (if contained in Q(t)) to (2) for all t, where ω3 = (1 +
√
−3)/2.

Remark. If t ∈ {(−1 ± 3
√
−3)/2} then Ft(X, Y ) is the cube of a linear polynomial. Thus (2) has

infinitely many solutions (x, y) for all roots of unity µ ∈ Q(
√
−3) in this case.

Acknowledgment. The authors thank Volker Ziegler for pointing out the mistakes in their original
paper [6].
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t Number of solutions max{|x|2, |y|2}
−4 6 81
−2 6 9
−1 12 81

0 12 81
1 6 9
3 6 81

−1 ± 2i 24 5
−1 ± 3i 24 5

±2i 24 5
±3i 24 5

−1 ±
√
−2 6 9

−1 ± 2
√
−2 6 3

±
√
−2 6 9

±2
√
−2 6 3

−2 ± 2
√
−3 12 688

(−3 ± 3
√
−3)/2 24 7

−1 ±
√
−3 24 3

−1 ± 2
√
−3 6 1

(−1 ±
√
−3)/2 18 27
±
√
−3 24 3

±2
√
−3 6 1

(1 ± 3
√
−3)/2 24 7

1 ± 2
√
−3 12 688

−2 ±
√
−5 6 86

1 ±
√
−5 6 86

−1 ±
√
−7 12 4

(−1 ±
√
−7)/2 6 7
±
√
−7 12 4

(−3 ±
√
−11)/2 6 20

(1 ±
√
−11)/2 6 20

(−1 ±
√
−19)/2 6 19

(−1 ±
√
−31)/2 6 98

(−1 ±
√
−35)/2 6 611

Table 2. Overview on sporadic solutions to (2) for specific t.
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t x y

(−1 ±
√
−3)/2 ±3

√
−3 (1 ± 3

√
−3)/2

(−1 ±
√
−3)/2 (−5 ±

√
−3)/2 −2 ±

√
−3

(−1 ±
√
−3)/2 (5 ±

√
−3)/2 (−9 ± 3

√
−3)/2

(−1 ±
√
−3)/2 −2 ±

√
−3 (9 ± 3

√
−3)/2

(−1 ±
√
−3)/2 2 ±

√
−3 (5 ±

√
−3)/2

(−1 ±
√
−3)/2 (−9 ± 3

√
−3)/2 2 ±

√
−3

(−1 ±
√
−3)/2 (−1 ± 3

√
−3)/2 ±3

√
−3

(−1 ±
√
−3)/2 (1 ± 3

√
−3)/2 (−1 ± 3

√
−3)/2

(−1 ±
√
−3)/2 (9 ± 3

√
−3)/2 (−5 ±

√
−3)/2

(−1 ±
√
−7)/2 ±

√
−7 (−1 ±

√
−7)/2

(−1 ±
√
−7)/2 (−1 ±

√
−7)/2 (1 ±

√
−7)/2

(−1 ±
√
−7)/2 (1 ±

√
−7)/2 ±

√
−7

(−1 ±
√
−19)/2 ±

√
−19 (−3 ±

√
−19)/2

(−1 ±
√
−19)/2 (−3 ±

√
−19)/2 (3 ±

√
−19)/2

(−1 ±
√
−19)/2 (3 ±

√
−19)/2 ±

√
−19

(−1 ±
√
−31)/2 ±

√
−31 (−19 ±

√
−31)/2

(−1 ±
√
−31)/2 (−19 ±

√
−31)/2 (19 ±

√
−31)/2

(−1 ±
√
−31)/2 (19 ±

√
−31)/2 ±

√
−31

(−1 ±
√
−35)/2 ±2

√
−35 24 ±

√
−35

(−1 ±
√
−35)/2 −24 ±

√
−35 ±2

√
−35

(−1 ±
√
−35)/2 24 ±

√
−35 −24 ±

√
−35

Table 3. Sporadic solutions to Ft(x, y) = 1 for Re t = −1/2. The solutions to
Ft(x, y) = −1 are the negatives of the listed values. There are no solutions to
Ft(x, y) = µ for roots of unity µ other than for µ ∈ {−1, 1} for Re t = −1/2.


