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MINIMAL EXPANSIONS IN REDUNDANT NUMBER SYSTEMS:

FIBONACCI BASES AND GREEDY ALGORITHMS

CLEMENS HEUBERGER

Dedicated to Helmut Prodinger on the occasion of his 50th birthday

Abstract. We study digit expansions with arbitrary integer digits in base q (q integer) and

the Fibonacci base such that the sum of the absolute values of the digits is minimal. For the
Fibonacci case, we describe a unique minimal expansion and give a greedy algorithm to compute
it. Additionally, transducers to calculate minimal expansions from other expansions are given.
For the case of even integer bases q, similar results are given which complement those given in
[6].

1. Introduction

We study redundant digit expansions

n =
∑

j≥0

εjGj ,

where n is an integer, εj ∈ Z are arbitrary digits and Gj is the base sequence of the number
system. We are interested in minimal expansions with respect to the cost function

(1)
∑

j≥0

|εj | .

This (and a related cost function) has applications in the optimal design of arithmetical hardware
(cf. Reitwiesner [11] and Booth [1]), in coding theory (cf. for instance [9]) and in cryptography
(cf. Morain and Olivos [10]).

The binary case Gj = 2j has first been studied by Reitwiesner [11]. The general q-ary case
Gj = qj , where q ≥ 2 is an integer, has been considered in Heuberger and Prodinger [6], where
further references for the q-ary case can be found.

It turns out that there is not a unique minimal expansion of a given integer in base q. However,
a special expansion has been singled out in that paper [6], which we call the “symmetric signed
digit expansion” of n in base q: If q is odd, it is the unique q-ary expansion of n with digits
−(q − 1)/2, . . . , (q − 1)/2. If q is even, it is the unique q-ary expansion with digits −q/2, . . . , q/2
and the additional requirement that if |εj | = q/2 for some j ≥ 0, then 0 ≤ sign(εj)εj+1 < q/2.
This symmetric signed digit expansion is always a minimal expansion with respect to the costs
in (1). Since the symmetric signed digit expansion coincides with the notion of (q, d)-expansions1

with d = −(q − 1)/2 if q is odd, we are mostly interested in the case of an even q.
The symmetric signed digit expansion can be calculated by an easy algorithm, which could

be described by a deterministic finite transducer, from right to left.2 Additionally, a formula for
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calculating one digit without calculating the others can be given. In Heuberger and Prodinger [7],
carry propagations in von Neumann’s addition algorithm using the symmetric signed digit expan-
sion have been studied. In Grabner, Heuberger, and Prodinger [3], the frequencies of subblock
occurrences in the symmetric signed digit expansion are calculated asymptotically.

It seems natural to ask whether similar properties can be generalized to other number systems,
for instance to number systems with non-integer bases or to number systems defined by linear
recurrences. As an example for non-integer bases, canonical number systems in the Gaussian
integers have been studied in Heuberger [5]. In this case, it is impossible to predict the least
significant digit of a minimal expansion from the knowledge of a finite number of digits of the
standard expansion.

The simplest example of a number system defined by a recurring sequence is that defined by
the Fibonacci numbers. The Zeckendorf expansion [12] can be seen as the standard expansion
in this number system. Minimal redundant expansions in this system are the subject of the first
part of this paper. We define an “admissible expansion”, which is unique (Section 2) and minimal
(Section 3) with respect to (1). It can be calculated by a greedy algorithm (Algorithm 1), but it
cannot be calculated by a deterministic transducer from right to left. However, it is possible to
calculate some minimal expansion from right to left (Section 4). Since number systems defined by
recurring sequences are usually related to a greedy algorithm, we also investigate whether we can
calculate the admissible expansion from left to right by a transducer. It turns out (Section 5) that
the situation is similar to the right-to-left case: There is no transducer to calculate the admissible
expansion, but some minimal expansion can be calculated.

At this point, it is a natural question whether these “greedy” and “left-to-right” results can also
be ported back to the q-ary case (q even). The affirmative answer (Greedy algorithm in Section 6,
Left-right-conversion in Section 8) is given in the second part of this paper. On the way, we also
prove a minimality criterion (Theorem 12 in Section 7) for expansions in base q (q even), which
also reproves most properties of the symmetric signed digit expansion.

In order to facilitate notation, we declare all definitions and notations to be local with respect
to the corresponding part of the paper, i.e., to avoid useless repetitions, we will not always mention
“Fibonacci” in the first part of the paper and vice versa.

Part 1. Fibonacci Number System

2. Admissible Expansions

We consider expansions3 ε = (. . . , ε2, ε1) of integers n in the number system given by the
Fibonacci numbers, i. e.

n =
∑

j≥1

εjFj , εj ∈ Z,

where εj 6= 0 for a finite number of j ≥ 1 and Fj are the Fibonacci numbers4

Fn+1 = Fn + Fn−1 for n ∈ Z and F0 = 0, F1 = 1.

We are interested in minimal expansions with respect to the costs

c(ε) =
∑

j≥1

|εj |.

We remark that
F6 − F2 = 7 = F5 + F3.

Since 7 is not a Fibonacci number, both expansions of 7 are minimal with respect to the costs c.
Therefore, there is no unique minimal expansion of integers in the Fibonacci system with arbitrary
digits.

3Boldface letters will be used to denote finite or (formally) infinite sequences. The sequence which consists of
zeros only will be written as 0.

4In the context of digit expansions, the Fibonacci numbers are often defined to start with F0 = 1, F1 = 2.
However, for our purposes, it will be convenient to have two base elements 1, this will enable us to consider fewer
special cases at the boundary of the expansion.
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However, we will describe a special form of minimal expansions.
We say that the finite sequence (ar, . . . , a1) is a subsequence of ε ∈ Z

N if (ar, . . . , a1) =
(ε`+r−1, . . . , ε`) for some ` ≥ 1.

Definition 1. A sequence ε = (. . . , ε3, ε2, ε1) ∈ {0,±1}N with finitely many nonzero elements is
called admissible, if

(A1) ε1 = 0,
(A2) The following sequences (or their negatives) do not occur as subsequences of ε:

(a) (−1, 1),
(b) (1, 1),
(c) (−1, 0, 1),
(d) (1, 0, 1),
(e) (1, 0, 0, 1).

A sequence ε is called an admissible expansion of an integer n, if it is an admissible sequence and
if n =

∑

j≥1 εjFj .

Theorem 2. Let n be an integer. Then there is a unique admissible expansion ε of n. It can be
calculated by Algorithm 1.

This expansion ε(n) is minimal with respect to the costs c, i. e.,

c(ε(n)) = min{c(η) : η ∈ Z
N is an expansion of n}.

Algorithm 1 Calculation of the admissible expansion of n.

Input: n ∈ Z

Output: Admissible expansion ε ∈ {0,±1}N of n.
ε := 0

m := n
while m 6= 0 do

Choose ` ≥ 2 such that
⌊

F`+2 + F`

5

⌋

< |m| ≤
⌊

F`+3 + F`+1

5

⌋

.

ε` := sign(m)
m := m − ε`F`

end while

The remainder of this section proves the first part of Theorem 2, i. e., existence, uniqueness
and correctness of Algorithm 1.

Lemma 3. Let 0 6= η be an admissible expansion of an integer n and ` := max{j ≥ 1 : ηj 6= 0}.
Then

(2)

⌊

F`+2 + F`

5

⌋

< η`n ≤
⌊

F`+3 + F`+1

5

⌋

.

Proof. Without loss of generality, we may assume η` = 1, because −η is an admissible expansion
of −n.

We first consider the case ηj = 0 for j 6= `. Since ` ≥ 2 by definition, we have (F`+2 + F`)/5 <
F` = n ≤ (F`+3 + F`+1)/5 and the assertion follows immediately. Therefore, we assume in the
sequel that there are at least two nonzero digits in the expansion η. This yields ` ≥ 5 by (A2).

Let

α :=
1 +

√
5

2
, β :=

1−
√

5

2
.

Then we have

(3) Fj =
1√
5

(

αj − βj
)
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for j ∈ Z.
We first prove that the sign of any admissible expansion equals the sign of its most significant

digit. Indeed, writing ` = 2q + r for some r ∈ {1, 2} and using (A2a) and (A2b) only, we get

∑̀

j=1

ηjFj ≥ F` −
q−1
∑

j=0

F2j+r = F` −
q−1
∑

j=0

(F2j+r+1 − F2j+r−1) = F` − F`−1 + Fr−1 ≥ 1.

We now write ` = 4q + r for 2 ≤ r ≤ 5. Then using all conditions of (A2) and the above
observation, we get

n =
∑̀

j=1

ηjFj ≤ F` + F`−4 + F`−8 + · · · + Fr.

Using (3), this can be summed up to obtain

n ≤ 1√
5

(

αr α4q+4 − 1

α4 − 1
− βr β4q+4 − 1

β4 − 1

)

.

Since 1/(z4 − 1) = 1
5 (z−1 + z−3) for z = α, β, we get

n ≤ F`+3 + F`+1 − Fr−1 − Fr−3

5
.

By construction, the right hand side is an integer. We note that Fr−1 + Fr−3 ∈ {1, 2, 3, 4} for
2 ≤ r ≤ 5. This yields the upper bound in (2).

Similarly, we can derive a lower bound for n:

n ≥ F` − (F`−3 + F`−7 + · · · + Fr′)

for r′ = 2 + (` − 1) mod 4. Using the above estimate yields

n ≥ F` −
⌊

F` + F`−2

5

⌋

=

⌈

4F` − F`−2

5

⌉

=

⌈

F`+2 + F`

5

⌉

.

Since the argument of the ceiling function is not an integer (this follows from the derivation of the
upper bound above), we get the lower bound in (2). �

We prove the uniqueness of admissible expansions by induction on |n|. Since b(F4 + F2)/5c = 0,
there is no nonzero admissible expansion of n = 0. For given nonzero n, there is a unique ` ≥ 2
and a unique η` ∈ {±1} such that (2) holds. Therefore, the digits ηj for j ≥ ` in any admissi-
ble expansion of n are uniquely determined. Furthermore, (. . . , 0, η`−1, . . . , η1) is an admissible
expansion of n − η`F`. Since (2) implies

(4) − |n| < −
⌊

F` + F`−2

5

⌋

≤ |n| − F` ≤
⌊

F`−1 + F`−3

5

⌋

< |n| ,

the remaining digits ηj , 1 ≤ j < `, are uniquely determined by induction.
It is clear that the integers −3 ≤ n ≤ 3 have an admissible expansion. Given n with n ≥ 4,

there is an ` ≥ 5 such that (2) is satisfied with η` = 1. The integer n′ := n−F` has an admissible
expansion (. . . , 0, η′

`′ , . . . , η
′
2, 0) by induction. If n′ > 0, we have `′ ≤ `−4 by (4), whereas `′ ≤ `−3

if n′ < 0. In both cases, we may set ηj := η′
j for j 6= ` to obtain an admissible expansion of n.

This corresponds exactly to Algorithm 1.
This concludes the proof of the first part of Theorem 2.

3. Minimal expansions

We first prove that there are always minimal expansions which only use the digits 0,±1.

Lemma 4. For n ∈ Z, the set opt(n) of expansions ε ∈ {0,±1}N of n with digits 0,±1 such that

c(ε) = min
{

c(η) : η ∈ Z
N with n =

∑

j≥1

ηjFj

}

.

is nonempty.
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Proof. It is well known that every positive integer n has a finite expansion n =
∑`

j=1 ηjFj with

ηj ∈ {0, 1}. Let now η ∈ Z
N be a minimal expansion of n with arbitrary integer digits. Among

these minimal expansions, choose one such that ` := max{j : |ηj | > 1} is minimal. Among those,
choose one such that |η`| is minimal. Without loss of generality, we may assume η` > 1.

It is clear that η`+1 ≤ 0: Otherwise, we could replace (η`+2, η`+1, η`) by (η`+2+1, η`+1−1, η`−1)
to get an expansion η′ of n with c(η′) < c(η). Similarly, we have ` ≥ 3 because 2F2 = 2F1 = F3.
We replace (η`+1, η`, η`−1, η`−2) by (η`+1 + 1, η` − 2, η`−1, η`−2 + 1) to get an expansion η′ of n
with c(η′) ≤ c(η). We have max{j :

∣

∣η′
j

∣

∣ > 1} ≤ ` and 0 ≤ η′
` < η`. This contradicts our choice of

η. �

Lemma 5. Let n be an integer. Then there is always a minimal expansion ε ∈ opt(n) which
satisfies (A2a), (A2b), (A2c), and (A2d).

Proof. We collect some subsequences which do not occur in any η ∈ opt(n). To prove this, we
also give the replacement which yields lower costs5.

(5)

Forbidden subsequence Replacement
(x, 1, 1) (x + 1, 0, 0)

(−1, 1, x) (0, 0, x − 1)
(−1, 0, 1) (0,−1, 0)

(0, 1, 0, 1, 0, 1, 0) (1, 0, 0, 0, 0, 0,−1)

We say that a sequence ε ∈ Z
N starts with a finite sequence (ar, . . . , a1), if εj = aj for 1 ≤ j ≤ r.

Note that we always read sequences of digits from right to left.
Any optimal expansion cannot start with the following subsequences:

(6)

Forbidden start Replacement
(−1, +1) (0, 0)

(x, 1, 0, 1) (x + 1, 0, 0, 0)
(−1, 0, 0, 1) (0,−1, 0, 0)

Of course, the above tables also hold when multiplied by −1.
Therefore, all η ∈ opt(n) satisfy (A2a), (A2b), and (A2c). Assume that η ∈ opt(n) contains a

subsequence ±(1, 0, 1). We chose ` maximal such that (η`+2, η`+1, η`) = ±(1, 0, 1). Without loss
of generality, we consider the case +(1, 0, 1).

We have ` ≥ 2 and η`−1 = 0 by (6) and (5). Choose k ≥ 0 maximal such that

(η`+3k+2, . . . , η`−1) = (1, 0, 0)(k) & (1, 0, 1, 0),

using the following notations: The concatenation (ar, . . . , a1) & (bs, . . . , b1) of two finite sequences
is defined to be (ar, . . . , a1, bs, . . . , b1). For a finite sequence a = (ar, . . . , a1), a(k) denotes
a & a & · · · & a, where a is repeated k times.

It is clear that η`+3k+3 = 0. We have

(0) & (1, 0, 0)(k) & (1, 0, 1, 0) = (0, 1, 0)(k+1) & (1, 0) ↔ (1, 0,−1)(k+1) & (1, 0)

= (1, 0) & (−1, 1, 0)(k+1) ↔ (1, 0) & (0, 0,−1)(k+1),

where ↔ means “can be replaced by”. This resulting expansion of n is called η′. We note that
c(η′) = c(η). Consider (η′

`+3k+5, η
′
`+3k+4, η

′
`+3k+3) = (η`+3k+5, η`+3k+4, 1). Since η′ ∈ opt(n), we

have η′
`+3k+4 = 0 and η′

`+3k+5 ∈ {0, 1}. By the maximality of k, we get η′
`+3k+5 = 0. This implies

that if (η′
`′+2, η

′
`′+1, η

′
`′) = ±(1, 0, 1) for some `′, we have `′ ≤ ` − 3.

The assertion of the lemma follows by induction. �

For brevity, we write A := (0, 0, 1), Ā := (0, 0,−1) and write a sequence satisfying (A2a), (A2b),
(A2c), and (A2d) just as a juxtaposition of the letters 0, A, Ā. As always, the most significant
block is left.

5Here and in the sequel, x, x0, x1, . . . denote elements of the actual alphabet.
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Proposition 6. Let n be an integer and η ∈ {0,±1}N be an expansion of n which satisfies (A2a),
(A2b), (A2c), and (A2d). Then it is optimal if and only if it does not contain the subsequences
Ā(A0)`AA for any ` ≥ 0 (or its negatives) and if does not start with Ā(A0)`A for any ` ≥ 0 (or its
negatives).

Proof. Assume that η ∈ {0, A, Ā}N is optimal. Since (−1, 0, 0, 1, 0, 0, 1) ↔ (0,−1, 0, 0, 0,−1, 0)
and the latter has smaller costs, the block ĀAA does not occur in an optimal expansion. The key
transformation of the proof of this proposition is

0AA = (0, 0, 0, 1, 0, 0, 1) ↔ (0, 0, 1, 0, 0,−1, 0) = AĀ0.

Therefore, for ` ≥ 1, Ā(A0)`AA = Ā(A0)`−1A0AA ↔ Ā(A0)`−1AAĀ0, which cannot occur in an
optimal expansion by induction.

Similarly, an optimal expansion does not start with ĀA (see (6)). Since F1 = F2, we can replace
a start Ā(A0)`−1A0A by Ā(A0)`−1AA0 for ` ≥ 1, and this sequence does not occur. We proved the
necessity of the two conditions.

Take any expansion η ∈ {0, A, Ā}N of n which satisfies the above conditions. We will transform
this expansion to the admissible expansion of n without changing costs. This implies that an
optimal expansion that satisfies (A2a), (A2b), (A2c), and (A2d)—such an expansion exists by
Lemma 5—has the same costs as the admissible expansion, which is therefore optimal. And this
yields optimality for all expansions which satisfy the conditions of the proposition.

Consider the leftmost occurrence of AA in η, and choose k ≥ 1, ` ≥ 0, and m ≥ 0 maximal such
that it has the form x4x3(A0)`(AA)k(Ā0)mx1x0. Since k is maximal and since we are considering
the leftmost occurrence of AA and since x3 = Ā is forbidden, we have x3 = 0. Since ` is maximal,
x4 = 0 or x4 = Ā. Since A(Ā0)mĀĀ is forbidden and since m is maximal, we have x1x0 /∈ {ĀĀ, Ā0}.

We transform this block as follows:

x40(A0)`(AA)k(Ā0)mx1x0 = x4(0A)`0(AA)k(Ā0)mx1x0

↔ x4(0A)`(AĀ)k0(Ā0)mx1x0

= x4(0A)`−10AA(ĀA)k−1(Ā0)m+1x1x0

↔ x4(0A)`−1
AĀ0(ĀA)k−1(Ā0)m+1x1x0

↔ x4A(Ā0)`(ĀA)k−1(Ā0)m+1x1x0.

Note that this new block does not contain any occurrence of AA or ĀĀ except possibly x1x0 = AA.
Therefore and since x1x0 /∈ {Ā0, ĀĀ}, the transformation did not introduce any forbidden block.
Moreover, it did not change the costs. We note that the digits right of (AA)k have not been
changed, they (or some of them) could even be missing (i. e., the block is near the (right) start of
the expansion).

We repeat this construction until there is no more occurrence of AA or ĀĀ in η. The resulting
sequence is admissible, unless it starts with A (resp. Ā). We choose ` ≥ 0 maximal such that the
sequence starts with x1x0(A0)`A. By assumption, we have x0 6= Ā. Since there is no more block
AA in the sequence, we get x0 6= A. This implies x0 = 0. Furthermore, x1 6= A by the maximality
of `. Using F1 = F2, we rewrite the start of η as x10(A0)`A = x1(0A)`0A = x1(0A)`A0. If ` ≥ 1,
we introduced a block AA, but we did not introduce a forbidden sequence. Therefore, the above
construction can be used once again to remove AA. As we noted above, this does not change the
digit η1.

Finally, this new sequence is admissible. By the argument described above, the proposition is
proved. �

This concludes the proof of Theorem 2.

4. Calculation of a Minimal Expansion from another Expansion From Right to

Left

As in the previous section, A = (0, 0, 1) and Ā = (0, 0,−1). We will write 1̄ := −1.
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Theorem 7. Let n be an integer and η = (η`, . . . , η1) ∈ {0,±1}` be an expansion of n such that
ηjηj+1 = 0 for 1 ≤ j ≤ ` and η1 = 0. Then the transducer in Table 1 translates η (read from right
to left) into a minimal expansion of n.

In: 0 In: 01 In: 01̄ In: ⊥
from Out: To: Out: To: Out: To: Out: To:

ε ε 0 — — —
⊥ — — — —
0 0 0 ε 010 ε 01̄0 ⊥ ⊥

010 ε A0 ε 10Ā 0 Ā0 ⊥A0 ⊥
10Ā Ā 010 00Ā 10 ε ĀA0 ⊥A0Ā ⊥
ĀA0 ĀA0 0 ĀĀ 010 A0 01̄Ā ⊥ĀA0 ⊥

A0 A0 0 0 01A ε ĀĀ ⊥A0 ⊥
01A ε AA 0Ā0 10 A Ā0 ⊥AĀ0 ⊥
10 ε 010 00 10 Ā 0 ⊥A0 ⊥
AA ε AĀ0 A 01A Ā0 Ā0 ⊥AĀ0 ⊥
01̄0 ε Ā0 0 A0 ε 1̄0A ⊥Ā0 ⊥
1̄0A A 01̄0 ε AĀ0 00A 1̄0 ⊥Ā0A ⊥
AĀ0 AĀ0 0 Ā0 01A AA 01̄0 ⊥AĀ0 ⊥

Ā0 Ā0 0 ε AA 0 01̄Ā ⊥Ā0 ⊥
01̄Ā ε ĀĀ Ā A0 0A0 1̄0 ⊥ĀA0 ⊥
1̄0 ε 01̄0 A 0 00 1̄0 ⊥Ā0 ⊥
ĀĀ ε ĀA0 A0 A0 Ā 01̄Ā ⊥ĀA0 ⊥

Table 1. Transducer to compute a minimal expansion from right to left. Initial
state ε, terminal state ⊥. ε denotes the empty word. ⊥ denotes the left end of
the sequence.

Corollary 8. Let n be a nonnegative integer and η = (η`, . . . , η1) ∈ {0, 1}` be its Zeckendorf
expansion. Then the transducer in Figure 1 translates η (read from right to left) into a minimal
expansion of n.

Proof of Corollary 8. If the edges with input label 01̄ are removed from the transducer in Table 1,
only the states ε, 0, 010, 10Ā, A0, 01A, 10, AA, and AĀ0 are accessible. When leaving 10Ā, the
first letter of the output is always Ā, therefore we can output Ā already on the way to 10Ā, which
is then equivalent to 10 and can be removed. Similarly, a symbol 0 is output when leaving A0 and
the word Ā0 is output when leaving AĀ0. Therefore, these two states can be replaced by a new
state with label A. The remaining transducer corresponds to Figure 1. �

Proof of Theorem 7. For each edge a
i|o−−→ b, we can check that i & a ↔ b & o, which implies that

the resulting expansion is indeed an expansion of n. Since the output consists of 0, A, and Ā only,
conditions (A2a), (A2b), (A2c), and (A2d) are automatically satisfied.

We consider the output of the transducer in Table 1. To describe this language, we construct
a new “output automaton” just by replacing the input by the output. We expand edges where

necessary: For instance, we replace 10Ā
00Ā−−→ 10 by 10Ā

Ā−→ v1
0−→ v2

0−→ 10 for some new states
v1 and v2. The result is a non deterministic finite automaton. We use the standard algorithm to
transform it to a deterministic finite automaton. Although in theory, this may be an exponential
process, it turns out that in our case, many states are either not accessible or can be identified with
other states. Therefore, we just number the new states without retaining their actual meanings.
We just remember that state 1 corresponds to the old initial state. The resulting automaton is
described in Table 2.
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0

⊥

010

A

AA

01A

10

ε
0
| 0

01 | ε

0
|
0

01 | Ā

⊥ | A0

0
| A

01 | ε

⊥
|
A

0 | Ā0

01
| A

⊥
|
A

Ā
0

0 | ε
0
1
|
0
Ā

0

⊥
| A

Ā
0

0 | ε

01
| 0

0

⊥ | A0

0
|
ε

Figure 1. Transducer to compute a minimal expansion from the Zeckendorf
expansion from right to left. Initial state ε, terminal states 0 and ⊥. ε denotes
the empty word. ⊥ denotes the left end of the sequence.

We make the following observations:

After reading . . . . . . the set of possible states is
A {3, 8, 14, 15, 21},

AA {3},
0AA {10}.

Since there is no edge Ā leaving state 3 and no edge A leaving state 10, the output of the transducer
in Table 1 does not contain the subsequences Ā(A0)`

AA for ` ≥ 0.
Similarly, we note that if we start at state 1, the words ĀA and A0A cannot be read, we see

that the output of the transducer in Table 1 does not start with Ā(A0)`
A for ` ≥ 0. Since the

transducer in Table 1 is invariant on multiplication by −1, the same holds for the corresponding
negative sequences. By Proposition 6, the output of the Transducer in Table 1 is a minimal
expansion of n. �

Remark 9. The output of the transducer in Table 1 is in fact the language defined by the automaton
in Figure 2.

Proof. We can identify some states of Table 2:

Identified states New name
1, 14, 18 31

2, 7, 9, 12, 13, 17, 23, 24, 25, 26 32
6, 16, 19 27
8, 15, 21 28

10, 22 30
11, 20 29.

The result corresponds to Figure 2. �
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from In: 0 A Ā ⊥
1 2 3 4 5
2 7 8 6 5
3 10 3 — —
4 11 — 4 —
5 — — — —
6 13 14 4 5
7 7 15 16 5
8 9 3 18 5
9 25 15 16 5

10 20 — 19 —
11 22 21 — —
12 12 15 16 5
13 23 15 16 5
14 24 3 4 5
15 17 3 18 5
16 12 14 4 5
17 17 15 16 5
18 26 3 4 5
19 23 14 4 5
20 10 15 — —
21 25 3 18 5
22 11 — 16 —
23 13 15 16 5
24 25 8 16 5
25 9 15 16 5
26 23 15 6 5

Table 2. Automaton describing the output of the transducer in Table 1. Initial
state 1. Terminal state 5.

43

2930

32

2728

31

0

Ā

0

A

0

A

Ā

0

A

Ā

0

A

Ā

0

A

0

Ā

0

A

Ā

Figure 2. Output of the transducer in Table 1. Initial state 31. Terminal states
27, 28, 31, 32.
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5. Calculation of a Minimal Expansion from another Expansion From Left to

Right

It is also possible to calculate a minimal expansion from left to right, i. e., from the most
significant digits to the least significant digits. We write 1̄ = −1, C := (1, 0, 0), C̄ := (−1, 0, 0). In
this case, we have to be more careful about the boundary conditions, especially on the right start
of the expansion.

We cannot expect to calculate an admissible expansion by a deterministic finite transducer:
α := (0C)`0C0000 is an admissible expansion. However, the expansion β := (0C)`0CC0 (whose
left 4` + 4 digits are identical to those of α) has to be rewritten to C(C̄0)`+10. Therefore, the
most significant digit of an admissible expansion cannot be calculated from the knowledge of the
k most significant digits in (for instance) the Zeckendorf expansion for any absolute constant k.
However, a minimal expansion can be calculated, as it is demonstrated in Theorem 10.

Theorem 10. Let n be an integer and η = (η`, . . . , η1) ∈ {0,±1}` be an expansion of n such that
ηjηj+1 = 0 for j ≥ 1 and η1 = 0 and η` = 0. Then the transducer in Table 3 translates η (read
from left to right) into a minimal expansion of n.

In: 0 In: 10 In: 1̄0 In: ⊥
from Out: To: Out: To: Out: To: Out: To:

ε ε 0 — — —
⊥ — — — —
0 0 0 ε 010 ε 01̄0 0⊥ ⊥

01 ε 010 C 0 00 01 01⊥ ⊥
010 ε 0C ε C01̄ 0 0C 010⊥ ⊥
0C 0C 0 ε 0C10 0 0C1 0C⊥ ⊥

0C1 ε 0C10 C 0C̄ 0C0 01 0C1⊥ ⊥
0C10 ε CC̄0 C 0C̄1̄ 0C 0C 0C10⊥ ⊥
CC̄0 CC̄0 0 CC̄ 010 0C 0C1 CC̄0⊥ ⊥
C01̄ C 01̄0 C00 01̄ ε CC̄0 C01̄⊥ ⊥
01̄ ε 01̄0 00 01̄ C̄ 0 01̄⊥ ⊥

01̄0 ε 0C̄ 0 0C̄ ε C̄01 01̄0⊥ ⊥
0C̄ 0C̄ 0 0 0C̄1̄ ε 0C̄1̄0 0C̄⊥ ⊥

0C̄1̄ ε 0C̄1̄0 0C̄0 01̄ C̄ 0C 0C̄1̄⊥ ⊥
0C̄1̄0 ε C̄C0 0C̄ 0C̄ C̄ 0C1 0C̄1̄0⊥ ⊥
C̄C0 C̄C0 0 0C̄ 0C̄1̄ C̄C 01̄0 C̄C0⊥ ⊥
C̄01 C̄ 010 ε C̄C0 C̄00 01 C̄01⊥ ⊥

Table 3. Transducer to compute a minimal expansion from left to right. Initial
state ε, terminal state ⊥. ε denotes the empty word. ⊥ denotes the right end
of the sequence. It is assumed that the most significant input digit is 0, i. e., we
start at least one position left of the “true” (nonzero) most significant digit of the
input expansion.

Proof. The proof is analogous to the proof of Theorem 7. The automaton describing the output
of the transducer in Table 3 is given in Table 4. It can easily be checked that the sequences
C̄CC, C̄C0CC, C̄C0C0C, C̄C1, C̄C0C1, C̄1, C̄C01, and C̄C0C01 are forbidden by the automaton
in Table 4. Therefore, the output of the transducer in Table 3 is a minimal expansion of n by
Proposition 6. �
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from In: 0 C C̄ 1 1̄ ⊥
1 3 4 2 — — —
2 5 6 — — — —
3 8 9 10 11 11 7
4 13 — 12 — — —
5 15 16 — 14 — —
6 17 — 12 — — —
7 — — — — — —
8 8 18 19 11 11 7
9 21 4 12 11 — 7

10 23 6 2 — 11 7
11 24 — — — — —
12 25 6 — — — —
13 27 — 26 — 14 —
14 24 — — — — 7
15 5 18 — — — —
16 28 4 12 14 — 7
17 29 4 19 — 14 7
18 30 4 12 14 — 7
19 31 6 2 — 14 7
20 21 18 19 11 11 7
21 20 18 19 11 14 7
22 23 18 10 11 11 7
23 28 18 19 14 11 7
24 — — — — — 7
25 22 18 2 14 — 7
26 20 6 2 — 14 7
27 13 — 19 — — —
28 23 18 19 11 11 7
29 21 9 19 11 11 7
30 31 18 19 11 14 7
31 30 18 19 14 11 7

Table 4. Automaton describing the output of the transducer in Table 3. Initial
state 1. Terminal state 7.

Part 2. Symmetric Signed Digit Expansion in Base q

6. Greedy Algorithm

In this part of the paper, we consider the symmetric signed digit expansion defined in [6]: Let
q ≥ 2 be an even integer. There is a unique expansion n =

∑

j≥0 εjq
j with ε ∈ {−q/2, . . . , q/2}N0

and finitely many nonzero digits such that |εj | = q/2 implies 0 ≤ sign(εj)εj+1 < q/2.

Proposition 11. Let q ≥ 2 be even, 0 6= n be an integer, and ε ∈ {−q/2, . . . , q/2}N0 its symmetric
signed digit expansion to base q. Let ` := max{j : εj 6= 0}. Then

` =

⌊

logq

2(q + 1) |n|
q + 2

⌋

,(7)

ε` = sign(n)

⌊ |n|
q`

+
q

2(q + 1)

⌋

.(8)
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Proof. We first define the following quantities for k ≥ 0:6

C(k) :=
q

2
· qk +

(q

2
− 1

)

qk−1 +
q

2
· qk−2 +

(q

2
− 1

)

qk−3 + · · · +
(q

2
− [k odd]

)

· 1,

D(k) :=
(q

2
− 1

)

qk +
q

2
· qk−1 +

(q

2
− 1

)

qk−2 +
q

2
· qk−3 + · · · +

(q

2
− [k even]

)

· 1.

We calculate that

C(k) =
qk+1(q + 2)

2(q + 1)
− 1

2
− (−1)k+1

2(q + 1)
.

Since C(k) is an integer by construction and 0 < 1/2 + (−1)k+1/(2q + 2) < 1, we see that

C(k) =

⌊

qk+1(q + 2)

2(q + 1)

⌋

.

Similarly, we get

D(k) =

⌊

qk+2

2(q + 1)

⌋

.

We easily check that

(9) C(k − 1) + D(k − 1) + 1 = qk and D(k − 1) +
q

2
qk = C(k).

Now, let ε be the symmetric signed digit expansion of the integer n and ε` be the most significant
digit. Without loss of generality, we may assume n > 0.

Let r := ` mod 2. Since (q/2 − 1)q + q/2 < (q/2)q + (q/2 − 1) and since there are no two
consecutive digits with absolute value q/2, we have

n = ε`q
` +

(`−r)/2−1
∑

j=0

(ε2j+r+1q + ε2j+r)q
2j+r + [` odd] ε0

≤ ε`q
` +

(`−r)/2−1
∑

j=0

(

q

2
· q +

(q

2
− 1

)

)

q2j+r + [` odd]
q

2
= ε`q

` + C(` − 1).

Since C(` − 1) < q` and n > 0, we conclude that ε` ≥ 0. By definition, ε` is nonzero, therefore,
we have ε` ≥ 1. This implies that ε`−1 > −q/2. We can derive a lower bound n ≥ ε`q

` −D(`−1).
Combining the two bounds and using (9), we obtain

(10) ε`q
` − D(` − 1) ≤ n < (ε` + 1)q` − D(` − 1).

This is equivalent to

ε`q
` ≤ n +

q`+1

2(q + 1)
< (ε` + 1)q`.

It is easily seen that this implies (8).
If ε` = q/2, we have ε`−1 < q/2, and the upper bound in (10) can be sharpened to

(11) n < ε`q
` + D(` − 1) + 1 =

q

2
q` + D(` − 1) + 1 = C(`) + 1 = q`+1 − D(`).

Since 1 ≤ ε` ≤ q/2, inequalities (10) and (11) can be combined to give
⌈

q`(q + 2)

2(q + 1)

⌉

= q` − D(` − 1) ≤ n < q`+1 − D(`) =

⌈

q`+1(q + 2)

2(q + 1)

⌉

.

This is equivalent to (7). �

Proposition 11 enables us to give a greedy algorithm to compute the symmetric signed digit
expansion.

6We use Iverson’s notation: [P ] = 1 if condition P is true, 0 otherwise, compare [4].
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Algorithm 2 Greedy Algorithm to Compute the Symmetric Signed Digit Expansion

Input: q ≥ 2 even, n an integer
Output: Symmetric signed digit expansion ε of n.

ε := 0

m := n
while m 6= 0 do

` :=
⌊

logq
2(q+1)|m|

q+2

⌋

ε` := sign(m)
⌊

|m|
q` + q

2(q+1)

⌋

m := m − ε`q
`

end while

7. Minimality of Expansions to Base q

Theorem 12. Let q ≥ 2 be even and ε ∈ Z
N0 be an expansion of an integer n. This expansion is

a minimal expansion of n, i. e.,

∑

j≥0

|εj | = min







∑

j≥0

|ηj | : η ∈ Z
N0 and

∑

j≥0

ηjq
j = n







,

if and only if |εj | ≤ q/2 for j ≥ 0 and if it does not contain the following subsequences (or their
negatives):

(1) (q/2, q/2) & (q/2− 1, q/2)(`) & (q/2) for ` ≥ 0,
(2) (x) & (q/2 − 1, q/2)(`) & (q/2) for x < 0 and ` ≥ 0.

Proof. We first prove necessity. Let ε ∈ Z
N0 be a minimal expansion of n. If εj > q/2, we can

replace (εj+1, εj) by (εj+1+1, εj−q). If εj ≥ q, then |εj − q| = εj−q = |εj |−q. If q/2+1 ≤ εj < q
then |εj − q| ≤ q/2−1 ≤ |εj |−2. Therefore, the original ε was not minimal. Therefore, all minimal
expansions have digits of absolute value at most q/2.

Next, we note that (x, q/2, q/2, q/2) ↔ (x+1,−q/2+1,−q/2+1,−q/2) for all x ∈ Z. The latter
has smaller cost. Similarly, (x, q/2) ↔ (x + 1,−q/2), which is less expensive for x < 0. Finally,
(q/2 − 1, q/2, q/2) ↔ (q/2,−q/2 + 1,−q/2) without changing costs. Inductively, this shows that
the two subsequences cannot occur in an optimal expansion.

We now turn to the proof of sufficiency. Let ε ∈ {−q/2, . . . , q/2}N0 be an expansion of n that
does not contain the two subsequences described in the theorem. We claim that we can transform
it to an admissible expansion of n without changing costs. We consider the rightmost occur-
rence of q/2, q/2 in ε and choose ` maximal such that it has the form (x2, x1) & (q/2, q/2 −
1)(`) & (q/2, q/2, x0) for some x0, x1, x2. We note that |x0| < q/2 since the subsequences
(q/2, q/2, q/2) and (q/2,−q/2) are forbidden. Similarly, we have 0 ≤ x1 ≤ q/2−1. If x1 = q/2−1,
the maximality of ` implies 0 ≤ x2 ≤ q/2 − 1. We have

(x2, x1) &
(q

2
,
q

2
− 1

)(`)

&
(q

2
,
q

2
, x0

)

↔ (x2, x1 + 1) &
(

−q

2
+ 1,− q

2

)(`)

&
(

−q

2
+ 1,− q

2
, x0

)

= (x2, x1 + 1) &
(

−q

2
+ 1,− q

2

)(`+1)

& (x0) .

We note that this transformation did not change costs (since x1 ≥ 0) and all new digits are in the
range −q/2, . . . , q/2. Furthermore, no subsequence ±(q/2, q/2) occurs since x1 + 1 = q/2 implies
0 ≤ x2 ≤ q/2− 1. Similarly, no subsequence ±(x, q/2) with x < 0 occurs in the transformed part
of the expansion. This and the fact that there is no block ±(q/2, q/2) right of the considered block
imply that the transformation did not introduce a forbidden block. However, one occurrence of
(q/2, q/2) has been removed without changing costs.

By induction, we get an admissible expansion of n without changing costs. Since each integer
n has a unique admissible expansion (by [6] or by Proposition 11), we see that the admissible
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expansion is minimal (we reproved this part of Theorem 2 of [6]) and therefore, all expansions
which satisfy the conditions of the theorem are minimal. �

8. Calculation of a minimal expansion from left to right in base q

We consider first the case of an even base q ≥ 4. It is not surprising that it is impossible to
calculate the admissible expansion from left to right, since

(

0,
q

2
,
q

2
− 1,

q

2
,
q

2
− 1, . . . ,

q

2
,
q

2
− 1

)

is admissible, whereas
(

0,
q

2
,
q

2
− 1,

q

2
,
q

2
− 1, . . . ,

q

2
,
q

2

)

has to be transformed to
(

1,− q

2
+ 1,− q

2
,−q

2
+ 1,− q

2
, . . . ,− q

2
+ 1,− q

2

)

.

Therefore, we can only calculate some minimal expansion from an arbitrary expansion in base q
with digits −q/2, . . . , q/2 from left to right. This can be done using a transducer. In theory, such
a transducer will have many states since its input alphabet −q/2, . . . , q/2 may become rather
large. The transducer is described in Table 5 in abbreviated form. We consider sets A, B, E, and
F as described in the table. A lowercase letter a, . . . , f will always designate an element of the
corresponding set. Overlined symbols are written for their negatives.

Look at the fifth row “5 ec̄d̄” and the sixth column “ec̄ d̄c −4”. This information is relevant
if we are in a state (x, y, z) with an x ∈ E, y = −q/2+1 and z = −q/2 and we read a further digit
w = c = q/2 − 1. The entry says that we have to write immediately ec̄, i.e., (x, y), and that our
next state is d̄c, which corresponds to the negative of row 4. Indeed, the forth state is labelled ec̄.
Since d = q/2 ∈ E, this corresponds to our new situation.

Of course, we sometimes write different symbols: For instance in row 5 and column 1, we are
in a state (x, y, z) with x ∈ E etc. We write (x − 1, q/2) and continue with cd.

As stated in Table 5, the transducer does not have proper initial and terminal states. The
following convention is used: We start reading one digit left of the “true” (i. e., nonzero) most
significant digit and are in state 0. At the right end of the input sequence, we add a further
(fictive) 0, follow the transducer this one more step, and arrive in state 0. Here, we can just drop
the superfluous 0 and are done.

Theorem 13. Let q ≥ 4 be even, n be an integer and η = (η`, . . . , η0) ∈ {−q/2, . . . , q/2}`+1 be
an expansion of n in base q. Then the transducer in Table 5 translates η (read from left to right)
into a minimal expansion of n.

Proof. First we easily check that the transducer indeed produces an expansion of n. By Theo-
rem 12, minimality is equivalent to the absence of some forbidden subsequences. To prove that
some subsequences do not occur, we could split up some of the states—this would be necessary
in order to be able to distinguish between some “normal” element e ∈ E and a “dangerous” q/2
(which is also contained in E)—and consider the output automaton as in several other places in
this paper.

However, it seems to be more manageable to do a direct verification of the 35 transition rules
using the following lemma:

Lemma 14. Let q ≥ 4 be even and ε, η ∈ {−q/2, . . . , q/2}N0 be two expansions of the same
integer n in base q. Assume that there is an integer k such that εj = ηj for all j > k. Then

(1) |εk − ηk| ≤ 1.
(2) If ηk = εk + 1 then ηk−1 ≤ −q/2 + 1 < 0 and εk−1 ≥ q/2 − 1 > 0.
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Proof. Without loss of generality, we assume ηk > εk. Then

0 =
1

qk





∑

j≥0

ηjq
j −

∑

j≥0

εjq
j



 =

k
∑

j=0

(ηj − εj)q
j−k = (ηk − εk) +

k
∑

j=1

ηk−j − εk−j

qj

> ηk − εk +
ηk−1 − εk−1

q
+

∞
∑

j=2

−q/2− q/2

qj
= ηk − εk +

ηk−1 − εk−1

q
− 1

q − 1
.

This implies

ηk − εk < 1 +
1

q − 1
and the first assertion of the lemma follows.

If ηk − εk = 1, we get
ηk−1 − εk−1

q
< −q − 2

q − 1
,

which yields
ηk−1 − εk−1 ≤ −q + 1.

The second assertion follows. �

As an example, we consider the transition from state ec̄d̄ with input d. According to Table 5, we
write ec̄ and go to state c̄d̄. It is clear that this operation cannot produce the first forbidden pattern
in Theorem 12. On the other hand, the second pattern could be matched if the pending digits
c̄d̄ . . . would be changed to d̄(c̄d̄)sd̄ for some s ≥ 0 by the (unknown) forthcoming digits. However,
this is impossible by Lemma 14: decreasing c̄ to d̄ implies that the next digit is positive. �

We remark that the output of the transducer in Table 5 depends on the specific input sequence:
The input 0dc̄d̄c̄d0 gives the output 0cdd(c − 1)d̄0, whereas the equivalent input 0dc̄d̄(c − 1)d̄0
remains unchanged.

Now, we turn to the case q = 2.

Theorem 15. Let q = 2, n be an integer and η = (η`, . . . , η0) ∈ {−1, 0, 1}`+1 be an expansion of
n. Then the transducer in Table 6 translates η (read from left to right) into a minimal expansion
of n.

Proof. The output automaton is given in Table 7. It does not allow subsequences 111, 11011,
110101, 1̄1, 1̄011, 1̄0101 (and their negatives). Hence the output is minimal by Theorem 12. �

We remark that as in the case of q ≥ 4, the transducer in Table 6 does not define a unique
minimal expansion: The input 011011̄00 is translated to 101̄00100, whereas the (equivalent) input
01100100 is not changed.

Furthermore, if we restrict the input to (nonegative) binary expansions, it is useful to replace

the transition 0110
0|0110−−−−→ 0 by 0110

0|101̄0−−−−→ 0. Then the transducer in Table 6 can be simplified
to the transducer in Figure 3. We note that the algorithm of Joye and Yen [8] leads to the same
transducer.
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6

C
L
E

M
E

N
S

H
E

U
B

E
R

G
E

R

from In: d̄ In: c̄ In: ā In: 0 In: a In: c In: d
state pattern Out queue To

1 0 ε 0d̄ −3 0 c̄ −2 0 ā −2 0 0 1 0 a 2 0 c 2 ε 0d 3
2 f ε (f − 1)d 3 ε f c̄ 4 f ā −2 f 0 1 f a 2 f c 2 ε fd 3
3 bd b cd 3 b dc̄ 4 bd ā −2 bd 0 1 bd a 2 bd c 2 ε (b + 1)c̄d̄ 5

4 ec̄ ε ec̄d̄ 5 ec̄ c̄ −2 ec̄ ā −2 ec̄ 0 1 ec̄ a 2 e c̄c −4 e (c − 1)d̄ −3
5 ec̄d̄ (e − 1)d cd 3 (e − 1)d dc̄ 4 ec̄d̄ ā −2 ec̄d̄ 0 1 ec̄d̄ a 2 ec̄ d̄c −4 ec̄ c̄d̄ −3

A :=
{

1 ≤ a ≤ q

2
− 2

}

B :=
{

0 ≤ b ≤ q

2
− 1

}

c :=
q

2
− 1

d :=
q

2

E :=
{

1 ≤ e ≤ q

2

}

F :=
{

1 ≤ f ≤ q

2
− 1

}

Table 5. Transducer to compute a minimal expansion in base q from left to right
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In: 1̄ In: 0 In: 1
from Out: To: Out: To: Out: To:

0 ε 01̄ 0 0 ε 01
01 0 01 0 10 ε 011
10 ε 011 10 0 1 01

011 01 01 ε 0110 10 01̄
0110 01 011 0110 0 10 01̄1̄

01̄ ε 01̄1̄ 0 1̄0 0 01̄
1̄0 1̄ 01̄ 1̄0 0 ε 01̄1̄

01̄1̄ 1̄0 01 ε 01̄1̄0 01̄ 01̄
01̄1̄0 1̄0 011 01̄1̄0 0 01̄ 01̄1̄

Table 6. Transducer to compute a minimal expansion in base 2 from left to right.

from In: 1̄ 0 1
1 3 4 2
2 — 5 —
3 — 6 —
4 7 4 8
5 3 9 —
6 — 10 2
7 12 11 —
8 — 13 12
9 7 9 —

10 — 10 8
11 7 4 2
12 — 1 —
13 3 4 8

Table 7. Output of the transducer in Table 6.

1 2

34

5

0|0

1|ε

⊥|0

0|01

1|1
0

⊥|01

1|0

0|ε

⊥|̄1

0|1̄
0

1|01̄

⊥|1̄0

Figure 3. Transducer to compute a minimal expansion in base 2 from left to
right starting with the unsigned binary expansion expansion. The symbol ⊥
denotes the end of the input sequence.
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