ON THE NUMBER OF OPTIMAL BASE 2 REPRESENTATIONS OF
INTEGERS

PETER J. GRABNER AND CLEMENS HEUBERGER/}

ABSTRACT. We study representations of integers n in binary expansions using the digits 0, +1.
We analyze the average number of such representations of minimal “weight” (= number of
non-zero digits). The asymptotic main term of this average involves a periodically oscillating
function, which is analyzed in some detail. The main tool is the construction of a measure on
[—1, 1], which encodes the number of representations.

1. INTRODUCTION

In many public key cryptosystems, raising one or more elements of a given group to large
powers plays an important role (cf. for instance [6, 13]). In practice, the underlying groups are
often chosen to be the multiplicative group of a finite field IF, or the group law of an elliptic curve
(elliptic curve cryptosystems).

Let P be an element of a given group, whose group law will be written additively. What we
need is to form nP for large n € N in a short amount of time. One way to do this is the binary
method (cf. [18]). This method uses the operations of “doubling” and “adding P”. If we write
n in its binary representation, the number of doublings is fixed by |log, n| and each one in this
representation corresponds to an addition. Thus the cost of the multiplication depends on the
length of the binary representation of n and the number of ones in this representation.

If addition and subtraction are equally costly in the underlying group, it makes sense to work
with signed binary representations, i.e., binary representations with digits {0, +1}. The advantage
of these representations is their redundancy: in general, n has many different signed binary rep-
resentations. Let n be written in a signed binary representation. Then the number of non-zero
digits is called the Hamming weight of this representation. Since each non-zero digit causes a
group addition (1 causes addition of P, —1 causes subtraction of P), one is interested in finding
a representation of n having minimal Hamming weight. Such a minimal representation was ex-
hibited by Reitwiesner [16]. Since it has no adjacent non-zero digits, this type of representation
is often called non-adjacent form or NAF, for short. On average, only one third of the digits
of a NAF is different from zero. Morain and Olivos [14] first observed that NAFs are useful for
calculating nP for large n quickly.

In this paper we show that in an average sense every integer n has “many” signed binary
representations of minimal weight. We give sharp upper bounds for the number f(n) of such
representations and study the summatory function of f(n). In order to prove that this summatory
function exhibits a periodically fluctuating main term, we develop a new approach to summatory
functions of digital functions. This new approach allows to study sums of digital functions with-
out having “nice” explicit formula for these functions. We construct a purely singular continuous
measure, which encodes the distribution of the number of minimal weight expansions after rescal-
ing. This measure is then used to describe the periodic fluctuation in the asymptotic expansion.
Furthermore, we describe a method to compute the Fourier coefficients of the periodic fluctuation
numerically to high precision.
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2. COUNTING FREQUENCIES

We consider binary {0, +1}-expansions € = (g, ...,&0) of integers. The Hamming weight of &
is defined as the number of non-zero digits €;. An expansion is said to be optimal or minimal,
if it has minimal Hamming weight amongst all expansions of the same integer. One example of
a minimal expansion is the non-adjacent form introduced by Reitwiesner [16]: this is the unique
binary expansion of an integer which satisfies €6;41 = 0. The number of minimal expansions of
an integer n will be denoted by f(n).

In [11, Remark 20, Figure 16] it has been proved that an expansion € is optimal if and only
if it is accepted by the automaton in Figure 1 (reading the digits from right to left), cf. also [10,
Theorem 12].

FIGURE 1. Automaton recognizing optimal signed binary expansions from right
to left

As a first result we give a sharp upper bound for the counting function f(n). This estimate
will also be useful for the average case analysis in Section 3.

Theorem 1. For all integers £, the number of optimal expansions can be bounded by

(2.1) F) < Fliog, ey +3,

where F,, denotes the Fibonacci sequence Fy =0, Fy =1, Fj,yo = Fp11 + F,,. This bound is sharp
for infinitely many values of £. Less precisely, we have
1+5

(2.2) f(n) = O(n'°8+?) with p = 5

Proof. The automaton in Figure 1 gives rise to four auxiliary functions a;(n), j = 2,...,5 which
count the number of admissible runs in the automaton representing n and starting in state j. We
set a;(n) = f(n). These functions satisfy the following relations, which can be read off from the
automaton

a1(2n) =a1(n) a1(2n+1) =az(n) +as(n+1)
a2(2n) = a1(n) az(2n+1) =as(n)
(2.3) az(2n) = az(n) as(2n+1)=0
as(2n) = a1(n) as(2n+1)=as(n+1)
as5(2n) = aq(n) as(2n+1) =0.

We claim that for s > 0 and 0 < £ < 4%, there are constants ¢1, co, i1, i2 (depending on s and /)
such that for all n,

a1(4°n+ 0) = c1a;, (n) + caa,(n+ 1),

{ila 7’2} € {(13 0)7 (Oa 1)7 (37 1)7 (274)5 (17 5)}a

min{cy, ca} < F,

max{cy, ca} < Fiya,
where i; = 0 means that ¢; = 0. Furthermore, for each s, there is an £ such that (c1,41,c2,92) =
(FS, 2, FS+1, 4) and an ¢ such that (Cl, il, Ca, ZQ) = (FSJrl, 2, FS, 4)

To prove the claim by induction on s, we consider the relations given in Table 1. We remark

here that the table shows that the function f(n) is 2-regular in the sense of Allouche and Shallit

(ct. [1]).
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m =0 m=1
cra1(4n + m) cra1(n) cra1(n) + cras(1 +n)
caa1(dn+m+1) coar (n) + caas(1 4+ n) caas(n) + c2aq(1 +n)
craz(dn+m) 4+ coar(dn+m+1) | (c1 + c2)ar(n) + caas(1 +n)  caaz(n) + c2aq(1 +n)
crag(dn 4+ m) + caaq(dn+m+1) | crar(n) (c1 + ¢c2)az(n) + ceas(1 +n)
cra1(dn 4+ m) + caas(dn+m+1) | crar(n) cra1(n) + (c1 + c2)as(1 +n)
m=2 m=3
cra1(4n + m) craz(n) + crag(1 +n) craz(n) + cia1(l+n)
coar(dn+m+1) coaz(n) 4+ caar (1 +n) coa1(1 4 n)
craz(dn+m) 4+ coar(dn+m+1) | (c1 + c2)as(n) + caa1(1+n) caa1(1+n)
craz(dn+m) 4+ coas(dn+m+1) | cras(n) + (1 + c2)as(1 4+ n) caa1(1+n)
cra1(dn 4+ m) + caas(dn+m+1) | craz(n) + craq(1 4+ n) cras(n) + (c1 + c2)ar (1 +n)

TABLE 1. Recurrence relations for a;

We see that if a1(4°n + £) = c1ai,(n) + czas,(n + 1), then we have a;(45Tin + md® + () =
crai; (n) + chay, (n + 1) with

min{c}, b} < max{ecy,ca} < Fisqq,
max{c},ch} <c1+co < Fs+ Fsiq = Fyyo

and such that (¢/,4%) is again one of the pairs considered. Moreover, there are the two pairs where
the inequalities are sharp.

Since a;(0) =1 for j € {1,2,3,4,5} and a1(1) = az(1l) = 1 and a;(1) =0 for j € {3,4,5}, the
assertion of the theorem follows by setting n = 0. O

3. CONSTRUCTION OF A MEASURE AND AVERAGE CASE ANALYSIS

This section is devoted to the precise study of the summatory function ) _, f(n), which
describes the average behavior of f(n). In order to exhibit the fluctuating main term of this
sum we introduce a measure p on [—1,1], which will turn out to be purely singular continuous
in Section 5. The construction of this measure is similar to the distribution measures of infinite
Bernoulli convolutions as studied in [4]. There it encodes the number of representations of integers
as sums of Fibonacci numbers.

Let fn(k) denote the number of representations of an integer k of minimal weight and length
at most n. Since any representation of minimal weight is at most 1 digit longer than the usual
binary expansion, f, (k) = f|iog, |k||+2(k) = f(k) for n > [log, k|| + 2. We define a sequence of
measures by

1
keZ
where §, denotes the unit point mass concentrated in z and
My =" fulk).
keZ

We notice that all points k2~ with f,, (k) > 0 lie in the interval [—1, 1].
In order to compute the characteristic function of p,, we consider the weighted adjacency matrix
of the automaton in Figure 1:

Az) =

O = O = =
O O = O W
S oo n O
= O O oOul-
Onlr O O O
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In the matrix A(z) a transition with label d is represented by an entry z?. Then we have (using
the notation e(t) = e2mit)

1
Z fa(k)e (k277t) = leA (e(t27™)) A (e(t27"1)) -+ A(e(t/2)) va
" kez "
with v; = (1,0,0,0,0) and vy = (1,1,1,1,1)T.
We notice that
(3.2) M, = (1,0,0,0,0)A(1)"(1,1,1,1,1)T = Ca™ + O(|aa|™),
where a and asg are the largest and second largest roots of the characteristic polynomial of A(1)
given by
(x—1)(x+1)(2® — 2% =32+ 1),
and C' = 3= (14a% + 5a — 22), numerically
a=2.17009..., as = —1.48119..., C =1.48055....
We will prove that (u,) weakly tends to a limit measure by showing that fi,,(t) tends to a limit
fi(t):

Lemma 1. The sequence of measures i, defined by (3.1) converges weakly to a probability measure
w. The characteristic functions satisfy the inequality

(3.3) fin (t) — ()| = {(9 (Jt[2=™)  for |t| <1

O (Jt]"2=")  for |t| > 1

with

1 —1
, - loga oglaal  _ (aesosy
log2 + log o — log ||

The constants implied by the O-symbol are absolute.

Proof. We study the product

n

P,(t)=a™" H A (e(t277)),

Jj=1

where [[7_, p; = pppn—1---p1. Wehave [[A(e(t))—A(1)|| < 7\/8]t|, where || - || denotes the spectral
norm. Since the characteristic polynomial of A(e(—t))T A(e(t)) turns out to be independent of ¢,

if t is real, we have ||A(e(t))|| = . For [t| < 1 we estimate
1 & mV/8t|
IPa(t) = Pa(O) < 2> "am™ 37 I ( 2o
{=1 1<j1 < <je<n m=1

L

(V) e [N V8
< —_— —1< .
0/6' |t| E 27 Sexp | — |t] 1 < 60|t

Furthermore, we have for m >n > £ and 1 < [¢| < 2°

M:

~
Il

1

(384)  [1Pa(t) = Pu(®)ll = || Pace(t2~")Po(t) — Pr—s(2~)Po(t)

< | Paee (@27 = Puce(0)|| + || Pra—e(£275) = P (0) || + [| Pa—e(0) — Pra—e (0) |
—/
<1202~ + 6 ('O;Q') =0 (jtr2=m).

In the last step we have set £ = [(1 —n)log, |t| + nn]. The inequality is valid for m > n > log, |t|.
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We now assume that |¢| < 1 and m > n > £. Then we have

an m

_Ulp()Qij(\);—mle ()2

am

‘—vlpn o (127 )Pg(t)vg—M—lem,g (t27°) Py(t)vs

m

< —Uan_g(O)Pg(t)vg - ](\;Z—lem_g(O)Pg(t)vg +0(t)27)
_ ‘—len 2(0) (Po(t) — PA(0)) vs — ;\Z—mlem_g(O) (Pat) — Po(0)) vs| + O (|t[2)

o (o ().

where we have used %len(O)vg =1 in the fourth line. Setting £ = |nn| gives

[Fin () = Fim (£)] = O (t]277") .
Thus [i,(t) converges uniformly on compact subsets of R to a continuous limit i(t), and the
measures [, tend to a measure y weakly. The two inequalities (3.3) are immediate. O

In the next lemma we prove continuity of the measure . Our study of the Fourier expansion of
the periodic main term as well as the remainder term estimate in (3.8) will depend on the modulus
of continuity given here.

Lemma 2. The measure | satisfies
(3.5) () = O ((y — 2)°)
for B =logy o — log, ¢ = 0.770632... > 1

Proof. We first notice that every interval [z, y] C [—1, 1] can be covered by an interval [z, y'], which
is the union of at most two elementary binary intervals, i.e. intervals of the form [a27", (a41)27"]
with a € Z, n € N, such that

1

W —2)sly-2) <y -2)

For a proof just consider the interval

(3.6)

27" 227 ], 27" [y2"]]

with n = —|log,(y — )] — 1.
Thus it suffices to prove (3.5) for elementary binary intervals. We have

pla2 " @02 = m Y )= m Y fa(a2n )

M gam—n<k<(at1)2m—n M o<k<gm—n

Let a2™™" +k = 32,54 ¢€;2/ be an optimal expansion. Then for some ¢ € {0,+1}, 327"~ Ye20
and Y j>m—n £;277mF™ are optimal expansions of k — 2™~ ™ and a + ¢, respectively. Therefore
we have

S @ik < Y flate)f(k—e2m ) < (at 1) ¢ 3 (k)

0<k<2m—n 0<k<2m—n —om-n<k<gm—n+l
ee{0,£1}

by Theorem 1. Since the last sum is bounded by M,,_,+2 we have
M’m—n "
p([a27", (a+1)27"]) < (a+ 1)logs# Jim Tmont? (@) .
m—oo M, o
Combining this with (3.6) gives (3.5). O

In order to give an error bound for the rate of convergence of the measures ., to the measure
1, we will use the following version of the Berry-Esseen inequality, which was proved in [7].
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Proposition 1. Let u1 and ps be two probability measures with their Fourier transforms defined
by

bk (t) = / 2™ quy (), k=1,2.

— 00

Suppose that (fi1(t) — fi2(t))t! is integrable on a neighborhood of zero and ps satisfies

w((w,y)) < cle—yl?
for some 0 < 3 < 1. Then the following inequality holds for all real x and all T > 0

T
|11 ((=00, 7)) — pa((—o0, )| < /j(T_lt)(Qm't)_l (i1 (t) — Fia(t)) e~ 2mit gt
T
+ <c+ %) T%7 4+ % / <1 - %) (7 (t) — 1ia(t)) e 2™ dt |

where
J(t) = wt(1 — [t]) cot 7wt + |¢].

Lemma 3. The measures p, satisfy

(3.7) (2, 9)) — p((z,9))| = O (27°")
uniformly for all x,y € R with 0 = n(ﬁi‘% = 0.2168....

Proof. We apply Proposition 1 to the measures p,, and u. For this purpose we use the inequalities
(3.3) to obtain

[1n (=00, 2)) = p((—00, 2))]

1 1
1 1
< 2‘”"/ dt + 2‘”"/ 7=t dt + T 75 + 27~ / It| dt + 2‘”"?/ |t dt < 270"
-1 1<|t<T -1 1<|t<T
by choosing T' = 0% ", O

In Section 5 we will prove that p is purely singular with respect to Lebesgue measure. As a
first step we prove the following lemma.

Lemma 4. The measure p is not absolutely continuous with respect to Lebesque measure.

Proof. We observe that

A2) = lim vlz—npn@k)vg = lim_ vlz—nPn,k(l)A(l)kvg.

m/2
The matrices Py, (1) converge to a limiting matrix P(1) with rate 120-2-™/2 + 6 (M) by

[e3%

(3.4). A numerical computation shows that

0.2350 —0.2552 + 0.049464 —0.01256 — 0.13954 —0.2552 — 0.049461% —0.01256 + 0.13954

0.1375 —0.1493 + 0.028931 —0.007352 — 0.08165% —0.1493 — 0.028931% —0.007352 + 0.08165%
P(l) = 0.06337 —0.06880 + 0.01333% —0.003388 — 0.037621 —0.06880 — 0.01333% —0.003388 + 0.03762%

0.1375 —0.1493 + 0.028934 —0.007352 — 0.08165% —0.1493 — 0.028931% —0.007352 + 0.08165%

0.06337 —0.06880 + 0.01333% —0.003388 — 0.037621 —0.06880 — 0.01333% —0.003388 + 0.03762%
The matrices a*A(1)* tend to

0.546474 0.319711  0.147326  0.319711  0.147326
0.319711 0.187045 0.0861923 0.187045 0.0861923
B =10.147326 0.0861923 0.0397184 0.0861923 0.0397184
0.319711 0.187045 0.0861923 0.187045 0.0861923
0.147326 0.0861923 0.0397184 0.0861923 0.0397184
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Thus 1
Jim a2k = v P(1)Bvz = —0.0703223....
Thus p is not absolutely continuous by the Riemann-Lebesgue lemma. O

Now the statement of the asymptotic behavior of the summatory function ) _y f(n) is a
consequence of the preceding discussion of the properties of p.

Theorem 2. The counting function f(n) of the representations of n with minimal weight satisfies
(3.8) S fln) = N 2@(log, N) + O(N'9%:2-0),

n<N
where ® denotes a continuous periodic function of period 1 and 6 is given in Lemma 3. Further-
more, ® is Holder continuous with exponent B = logya — log, ¢ = 0.770632.... The function

® is differentiable almost everywhere and singular in the sense that it is not the integral of its
deriwative.

Proof. By the definition of j,, in (3.1) we have for 2F=2 < N < 2k—1
> fm) =Y faln) = Mepe([0, N27%)) = CaFu([0, N27F)) + O(Jaal*) + O(aF27F).

n<N n<N
Setting ®(z) = Ca?~ {4 ([0,2{73-2]) we obtain the desired result. We notice that ®(0) =
lim,_,;— ®(z) by the fact that the measure p satisfies the relation p([0,2z)) = au([0,z)) for
O<z< % by definition.
The Holder exponent of ® follows from Lemma 2. The function & is differentiable almost
everywhere as a quotient of an increasing function and a differentiable function. The singularity
of @ follows from Lemma 4. O

4. DIRICHLET SERIES AND FOURIER COEFFICIENTS

In order to compute the Fourier coefficients of the periodic function ® occurring in Theorem 2,
we introduce the Dirichlet generating functions

w5 =y 4

which converge absolutely for R(s) > log, o by Theorem 2 (cf. [9]).
Using (2.3) we derive

Wi(s) = 27° (Wi(s) + Ua(s) + Wa(s)) + 14 27° (Hy (s) + Hy ()
Uo(s) =27%(Uy(s) + T5(s)) + 1+ 2_SH;'(3)

where
HE(s) = Za»(n) 1 .
J — J (n+ l)s ns

The Dirichlet series H ]i(s) are absolutely convergent for R(s) > log, a and convergent for
R(s) > logy o — 1. By general properties of Dirichlet series (cf. [9]) we have the following growth
estimates along vertical lines
(4.2) H]i(o +it) = O(|t|'°82277) for logya — 1 < o < log, a.

From (4.1) we get

(43)  Wy(s) = i fT(LCL) IR S il C Ugfﬁ)f;.{‘;f?ﬁ 2°Hyf (s) + 2°Hy (s).
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which provides the analytic continuation of ¥y(s) to the region R(s) > log, @ — 1 and shows that

the poles of Wy (s) in this region lie at s = log, o + lfg’g and s = log, |az| + (2?:;2)7” (keZ).

We now apply the Mellin-Perron summation formula to obtain

24100

1 N?%ds
Zf (17_):2_#2' / \pl(s)s(s—&-l)'
n<N 2—100
Shifting the line of integration to R(s) = log, @ — 3, using (4.3), and collecting residues yields

logy a— % +100

o 1 N*ds
S fn (1f_) S e (klogy N) + — / Vils)
n<N Xkt 2mi s(s +1)

1.
logy a—5—ico

where

20% + 20 — 1 4 (0 — 1)(Hy (x&) + Hy (x)) + oH3 (xi) + oHy (x&)
(a? 4+ 6 — 3)x log 2

(44) Cr —

2k7rz

and xx = logy o + . The integral and the sum converge by the growth estimate (4.2).
We use an argument given in [8] to compute the Fourier coefficients of the periodic function ®.

First we cite a pseudo-Tauberian argument stated in [5, Proposition 2]

Proposition 2. Let p be a continuous function and periodic with period 1 and let T be a complex
number with V(1) > 0. Then there exists a continuously differentiable function q of period 1 such
that

> n"p(logy n) = g(log N) + o(1).
n<N

/01 aw)du = - i : /Olp(u)du.

An application of this proposition to p(u) = ®(u)e(—fu) and 7 = x, shows that the ¢ in (4.4)
are indeed the Fourier coefficients of ®.

In order to obtain the convergence of the Fourier series of ®, we cite Bernstein’s theorem for
Fourier series (see [20, p. 240])

NT+1

Furthermore,

Proposition 3. If f is a real-valued function defined on [0,1] and satisfies a Holder condition of
order 3> 1/2, namely,

[f(z) = f)| < Kle—y|” (2,9 €[0,1]),
for some positive constant K, then the Fourier series of f converges absolutely and uniformly.
We summarize.

Theorem 3. The function ® defined in (3.8) admits an absolutely and uniformly convergent
Fourier series

O(t) = cxe(kt),

keZ

where ¢y, is given by (4.4).

In [8] amethod for the numerical computation of the Fourier coefficients ¢y, or more generally for
the computation of the values of Dirichlet generating functions of digital functions was described.
The basic idea is to expand the functions H ]i (s) in terms of function evaluations ¥;(s+k) (k > 1);
this is done by writing (n+ 1)7* as a binomial series. Since ¥;(s + k) ~ a;(1) for k large enough,
the infinite sum can be computed numerically.
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We have computed the first seven Fourier coefficients by this method:
co =1.00640 74723 03529 37352 02842 85855 81336 33055 57035 48188.. ..
c1 =0.00734 84453 42244 68089 95364 74294 73583 52315 12670 18294 . ..
4 0.02689 11696 16758 68783 02281 99800 38391 33382 04336 33025 . . .4
co = — 0.00430 40242 79775 54322 96219 62111 36973 03149 13327 29671 . . .
— 0.00267 4383730021 0210940115 62991 88249 06171 44235 24279 . . .1
c3 = —0.0012739427575344161001651 96139 66214 08173 27366 30382.. . .
4 0.00109 88363 17314 47930 07972 98256 69412 99603 80485 12526 . . .4
¢4 =0.00394 88393 42163 50681 33279 73298 99918 67013 01876 22678 . ..
— 0.00161 07854 95299 29954 46287 08562 73623 84651 8719247177 . . .4
cs = — 0.00277 30499 06965 12243 95529 90477 88154 74114 7115401015 . . .
4 0.00258 99972 84840 72727 87528 23704 81316 63001 64706 16579 . . .4
ce = — 0.00003 84537 28840 80211 49042 02548 65870 42924 48539 84912.. . .
— 0.00025 86306 19932 25562 45234 74086 81085 61564 92721 30980. . .4

In Figure 2, we compare plots of the function ® and the trigonometric polynomial formed with
the first 7 Fourier coefficients.

1.075¢
1.05;

1.025;

0.975¢

0.95;

FIGURE 2. Plot of ® compared with the trigonometric polynomial formed with
the first seven Fourier coefficients

5. PURITY OF THE MEASURE p

In this section we study the measure p introduced in Section 3 in further detail. In particular,
we show that it is purely singular continuous. As it is the case for Bernoulli convolutions (cf. [4])
the measure turns out to be pure as a consequence of the Jessen-Wintner theorem.

Lemma 5 ([12, Theorem 35|, [3, Lemma 1.22 (ii)]). Let Q = [],~,Qn be an infinite product
of discrete spaces equipped with a measure v, which satisfies Kolmogorov’s 0-1-law (i.e. every tail
event has either measure 0 or 1). Furthermore, let X,, be a sequence of random variables defined
on the spaces @, such that the series X = ZZO:O X, converges v-almost everywhere. Then the
distribution of X is either purely discrete, or purely singular continuous, or absolutely continuous
with respect to Lebesgue measure.

Remark 1. We notice that in [3] and [12] the additional assumption of mutual independence of
the random variables X, is made in the statement of the result instead of the 0-1-law. The proofs
however only depend on the 0-1-law.
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In the following we will study a measure v on the space
K = {x € {0, +1}N | Vn e N: (21, 29,...,2,) is an optimal expansion } .
We define v on cylinders
[e1,...en]={xel|z1=€1,...,2n =0}
by
. 1 . .
v([et, ... en)) = lim —# ({(x1,...,2) is optimal} N [e1,...,&,]) .
k— o0 Mk
We notice that the measure p studied in Section 3 is the image of v under the map x +—

1 27"
In order to give an explicit expression for v([eq,...,&,]) we introduce the adjacency matrices
A. associated with transitions with label € in the automaton in Figure 1:
10 0 0 O 01 0 00 0 0010
1 0 0 0 O 001 00 0 00 0O
Ap=10 1 0 0 O, A4=|0 0 0 0 Of, A1=|0 0 0 0 O
1 0 0 0 O 00 0 0 O 0 0 0 01
0 0010 0 0 0 00O 0 00 0O
We note that A(1) = Ag + A1 + A_1. Then we have
v([e1, ,En]):khm —le(l)k_"Aan < Ag vo
— 00 k
k k—n
= (khm — (a7TA(L)) )a”Aan o
1 —-n
:Elea Ae, - Ag v,

where B is the matrix introduced in the proof of Lemma 4.
Furthermore, we introduce a measure F on K by defining it on cylinder sets as
Fe1,...,en) =wla ™A, - A w,

where w is the normalized positive eigenvector of A(1) for the eigenvalue . Notice that B = w-w7 .
By definition we have

0182 [v1 B2

e en]) < cen]) < 2 e En

G e el S vllen o 2al) € G R ()

for all cylinders and therefore C1F (S) < v(S) < CyF (S) for all measurable sets S C K and
positive constants C; and Cy. Thus the measures v and F are equivalent.
Lemma 6. The random variables Y, (x1,x2,...) = x, on (K, F) form a mizing sequence, i. e.

o] )"
[F(ANB) = F(A)F (B)| <6 <72> F(A)F (B)

for Aeco(Y1,...,Y,) and B € 0(Yyikt1,-..) for all n,k € N.

Proof. Tt suffices to prove the lemma for cylinder sets A and B. Then we have
|F ({3&‘ e | Tl =E1y..-yTn = EnyTntk+1 = 51, oy Tntk+e = 5@}) — F([El, “. ,En])F([(Sl, “. ,(5@])|
= lwTa=14;, - As, ((oz_lA(l))k —w- wT) a "A. - Aqw

k
<6 (@) Fer, ... en)F ([01,...,00).

(0%

O
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Since mixing sequences of random variables satisfy a 0-1-law (cf. [17, Section V. b, p. 110] or
[19, § 1.7]), and since the measures v and F are equivalent, v satisfies the hypotheses of Lemma 5.
Therefore the measure p is of pure type; since we already know that p is continuous (Lemma 2)
but not absolutely continuous (Lemma 4) we have proved

Theorem 4. The measure p is purely singular continuous.

6. CONCLUDING REMARKS

In [15] and [2] an algorithm for number representation is suggested, which uses a randomized
perturbation of the classical Reitwiesner system (cf. [16]) to prevent differential power attacks on
cryptographic devices. All the algorithms presented there increase the weight of the representation.

Our results show that on average there exists a large number of representations of minimal
weight. Therefore a countermeasure against power attacks which does not increase the costs of
the operation is possible.

Acknowledgement. This research was initiated while the authors were invited to the John Knopf-
macher Centre, University of the Witwatersrand, Johannesburg.
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