
THE ALTERNATING GREEDY EXPANSION AND APPLICATIONS TO

COMPUTING DIGIT EXPANSIONS FROM LEFT-TO-RIGHT IN

CRYPTOGRAPHY

CLEMENS HEUBERGER‡, RAJENDRA KATTI¶, HELMUT PRODINGER∗, AND XIAOYU RUAN¶

Abstract. The central topic of this paper is the alternating greedy expansion of integers,
which is defined to be a binary expansion with digits {0,±1} with the property that the
nonzero digits have alternating signs. We collect known results about this alternating
greedy expansion and complement it with other useful properties and algorithms. In the
second part, we apply it to give an algorithm for computing a joint expansion of d integers
of minimal joint Hamming weight from left to right, i.e., from the column with the most
significant bits towards the column with the least significant bits. Furthermore, we also
compute an expansion equivalent to the so-called w-NAF from left to right using the
alternating greedy expansion.

1. Introduction

A signed binary expansion of an integer n is a radix 2 expansion of n where the digits
belong to the set {0,±1}. The central topic of this paper is the (balanced) alternating
greedy expansion, i.e., a signed binary expansion of n with the property that two consecutive
nonzero digits—even if separated by some digits 0—are opposite.

We use this expansion for constructing algorithms that compute optimal digital expansions—
which are useful in cryptography—from left to right, i.e., from the most significant to the
least significant digits. The usual double-and-add algorithms for computing scalar mul-
tiples (or linear combinations) of points in an Abelian group—for example the group of
rational points on an elliptic curve—need the digits of a signed binary expansion of the
scalar from left to right if precomputations are used. Therefore, this direction has the
advantage that no extra storage for the digits is needed. Optimality means that the Ham-
ming weight of the expansion—which essentially equals the number of group additions—is
minimum. The relevant feature of the alternating greedy expansion is that it blocks carries
in a certain sense, which makes a transformation from left to right more predictable.

We first discuss the alternating greedy expansion in Section 2. In particular, we give
algorithms for computing the alternating greedy expansion from left to right or from right
to left or in parallel from the digits of the unsigned binary expansion. This also yields a

‡ This author is supported by the grant S8307-MAT of the Austrian Science Fund.
¶ These authors are supported in part by the grant CCR-0429523 of the United State National Science

Foundation.
∗ This author is supported by the grant NRF 2053748 of the South African National Research

Foundation.
1



2 C. HEUBERGER, R. KATTI, H. PRODINGER, AND X. RUAN

proof of uniqueness. We conclude that section by some estimates for alternating greedy
expansions.

Sections 3 to 5 are devoted to the first application: Given integers x(1), . . . , x(d), we
consider signed binary expansions of these integers written as rows of an array. The aim is to
minimize the joint Hamming weight which is defined to be the number of nonzero columns.
This equals the number of group additions when computing the linear combination x(1)P1+
· · · + x(d)Pd of some points P1, . . . , Pd on the elliptic curve. We give two algorithms to
compute such a minimal joint expansion from left to right. To this aim, we review the
known results and right-to-left algorithms in Section 3 and study the effect of taking
alternating greedy expansions as an input. This enables us to describe an optimal left-to-
right algorithm using the right-to-left algorithm as a subroutine in Section 4. The basic
principle is to apply the right-to-left algorithm on a block of leading digits. Since the
alternating greedy expansion blocks carries in a special way, this procedure is shown to
be optimal. In Section 5 we refine the algorithm of Section 4 by avoiding superfluous
replacements and by formulating it as a single algorithm from left to right.

In Section 6 we consider expansions of a single integer with digits {−(2w − 1),−(2w −
3), . . . ,−3,−1, 0, 1, 3, . . . , 2w− 3, 2w− 1} of minimal Hamming weight. The corresponding
(well-known) right to left method is known as the sliding window method, it yields the
so-called w-NAF, i.e., the unique expansion with the same digits where all non-zero digits
are separated by at least w zeros. We show that in this case also, a left-to-right algorithm
can be easily obtained by first converting the input to its alternating greedy expansion.

Signed binary expansions have been used for a long time, cf. Booth [2]. We note that the
alternating greedy expansion has been introduced in [5], where we gave a greedy algorithm
for computing it as well as a transducer automaton which transforms the (unsigned) binary
expansion to this alternating greedy expansion from left to right. In that paper, we also
used this expansion for computing a minimal joint expansion of 2 integers from left to
right. The minimality proof relied on a counting argument using generating functions,
thus it was not very intuitive and cannot be used for general dimensions d. A similar
left-to-right algorithm was also presented in [9]. Although we never stated it explicitly, the
left-to-right algorithm for computing minimal signed binary expansions of single integers
as discussed in Joye and Yen [8] and [6] can also be seen to be based on the alternating
greedy expansion.

Left-to-right algorithms for minimal expansions with digits {−(2w − 1), −(2w − 3), . . . ,
−3, −1, 0, 1, 3,. . . , 2w − 3, 2w − 1} have also been developed by Avanzi [1] and Muir
and Stinson [11]. Our goal here is to show that the alternating greedy expansion is the
“natural” way to get such an algorithm, since the underlying “meta-algorithm” is to apply
the well-known right-to-left algorithm on blocks of alternating greedy expansions.

We will repeatedly use transducer automata to transform digit expansions, cf. for in-
stance [10].

A final remark on terminology: in contrast to [5], the “greedy” character of the alter-
nating greedy expansion does not play a dominant rôle in this paper. Nevertheless, we
decided not to change the name of the expansion by omitting the word “greedy” in order
to emphasize that we are indeed speaking on the same expansion as introduced in [5].
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2. The Alternating Greedy Expansion

Throughout this paper, a (signed binary) expansion of an integer n is an ε = (εj)j∈
�

0
=

(. . . , ε2, ε1, ε0) ∈ {−1, 0, 1}
�

0 such that only a finite number of εj is nonzero and n =
value(ε) :=

∑

j≥0 εj2
j. We will identify finite and (left) infinite sequences in a natural way

by padding with leading zeros where appropriate.
The unisigned binary expansion of an integer n is the unique signed binary expansion of

n with digits in {0, 1} or {0,−1} only, depending on the sign of n.
We recall the definition of an alternating greedy expansion of integers as introduced

in [5]. A signed binary expansion ε of an integer n is called a (balanced) alternating greedy
expansion of n, if it satisfies the conditions

if εj = ε` 6= 0 for some j < `, then there is a k with j < k < ` such that εj = −εk = ε`,

(1)

for j := min{j : εj 6= 0} and j := max{j : εj 6= 0}, we have εj = −εj. (2)

The existence of the alternating greedy expansion of an integer has been proved in [5]
by a transducer automaton and we stated there that it is unique without giving a detailed
proof. We will give a detailed proof below by exhibiting an (algorithmic) bijection between
the unisigned binary expansions and the alternating greedy expansions preserving the value
of the expansion.

Algorithm 1 algBINtoAGE: Computing the Alternating Greedy Expansion from the
Unisigned Binary Expansion from Left to Right

Input: Unisigned binary expansion η = (ηJ−1, ηJ−2, . . . , η1, η0) of an integer n.
Output: Alternating greedy expansion ε = (εJ , εJ−1, . . . , ε1, ε0) of n.

ηJ ← 0
η−1 ← 0
for J ≥ j ≥ 0 do

εj ← ηj−1 − ηj

end for

We first consider Algorithm 1 operating from left to right. A direct computation shows
that value(ε) = value(η). We observe that Algorithm 1 can be realized by the transducer
in Figure 1 working from left to right, i.e., reading the most significant digits first. In
our transducers, we write 1̄ for the digit −1. The label of a state corresponds to the last
input digit read, the superscript + or − remembers the sign of the last nonzero input
digit read. If we restrict the transducer to the input alphabet {0, 1,⊥} only, we obtain
the transducer (with other labels for the states) shown in Figure 2 of [5]. Considering the
output of the transducer in Figure 1, it turns out that this output is indeed an alternating
greedy expanion. Thus Algorithm 1 is correct. This also re-proves that every integer has
an alternating greedy expansion.

Next, we consider Algorithm 2. We observe that it can be realized by the transducer
in Figure 2. The labels of the states correspond to the next output digit which has to
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0 1+−1− 0+0−

0|0

1|1

1̄|1̄

⊥
|0

1|0

⊥
|̄1

0|1̄

1̄|0

⊥
|1

0|1 1|1

⊥|0

0|0

1̄|1̄

⊥|0

0|0

Figure 1. Transducer realizing algBINtoAGE from left to right. The symbol
⊥ denotes the end of the sequence.

Algorithm 2 algAGEtoBIN: Computing the Unisigned Binary Expansion from the Alter-
nating Greedy Expansion from Left to Right

Input: Alternating greedy expansion ε = (εJ , εJ−1, . . . , ε1, ε0) of an integer n.
Output: The unisigned binary expansion (ηJ−1, ηJ−2, . . . , η1, η0) of n.

ηJ ← 0
for j = J − 1 down to 0 do

ηj ← ηj+1 + εj+1

end for

be written (note that Algorithm 2 computes εj from the digits in position (j + 1)), the
superscript remembers the last nonzero input digit read. This shows that the output of
Algorithm 2 is indeed a unisigned binary expansion. Furthermore, a direct computation
shows that both compositions algBINtoAGE◦algAGEtoBIN and algAGEtoBIN◦algBINtoAGE

are the identity map, thus Algorithms 1 and 2 are inverse to each other. This also shows
that Algorithm 2 preserves the value of the expansion. We conclude that Algorithm 2 is
correct, too. Moreover, this also shows that each integer n has exactly one alternating
greedy expansion, hence we call it the alternating greedy expansion of n.

Since the loop in Algorithm 1 can be executed in parallel, we can compute the alternating
greedy expansion of n by digitwise subtraction of the unisigned binary expansions of 2n
and n. This gives rise to the explicit digit formula

εj = ηj−1 − ηj = sign(n)

(⌊

|n|

2j−1

⌋

− 3

⌊

|n|

2j

⌋

+ 2

⌊

|n|

2j+1

⌋)

,

where ηj and εj denote the digit in position j of the unisigned binary and the alternating
greedy expansion of n, respectively.

The right-to-left version of Algorithm 1 can be realized by the transducer in Figure 3.
We summarize our findings on the alternating greedy expansion in the following theorem.
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0 1−1 0−0+

0|0

1|0

1̄|0

⊥
|0

0|1

1̄|1

0|1̄

1|1̄ 1|0

⊥|0

0|0

1̄|0

⊥|0

0|0

Figure 2. Transducer realizing algAGEtoBIN from left to right.

0 1+−1− 0+0−

0|0

1|1̄

1̄|1

1|0

0|1

1̄|0

0|1̄ 1|1̄

0|0

1̄|1

0|0

Figure 3. Transducer realizing algBINtoAGE from right to left.

Theorem 1. For every integer n, there is a unique alternating greedy expansion ε of n.
It can be computed by digitwise subtraction of the unisigned binary expansions of 2n and
n, by the digit formula

εj = sign(n)

(⌊

|n|

2j−1

⌋

− 3

⌊

|n|

2j

⌋

+ 2

⌊

|n|

2j+1

⌋)

, (3)

by Algorithm 1, by the transducer in Figure 1 from left to right and by the transducer in
Figure 3 from right to left. It can be converted back to the unisigned expansion of n by
Algorithm 2, realized by the transducer in Figure 2 from left to right.

The digit formula (3) shows that the alternating greedy expansion is a member of the
class of expansions which can be written as a digitwise linear combination of the unisigned
binary expansion, cf. Prodinger [12]. Such representations enable one to perform a detailed
analysis of the frequency of digits (or subblocks) as described in [3], for instance.

For later use, we collect bounds for the alternating greedy expansion as well as for the
expansion satisfying (1), but violating (2). This latter expansion will also turn out to be
useful, so we make the following definition: An expansion ε of n satisfying (1) and

εj = εj for j := min{j : εj 6= 0} and j := max{j : εj 6= 0}

is called an unbalanced alternating greedy expansion of n.
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Lemma 2. Let ε 6= 0 be an expansion of an integer n and J = max{j : εj 6= 0}.

(1) We have sign(n) = sign(εJ).
(2) If ε is a balanced alternating greedy expansion, we have

2J−1 ≤ |n| < 2J . (4)

(3) If ε is an unbalanced alternating greedy expansion, we have

2J−1 < |n| ≤ 2J . (5)

Proof. The first part follows from the fact that
∣

∣n− εJ2J
∣

∣ < 2J . To prove the other two
parts, we note that

|n| = εJn = 2J − |value(εJ−1, . . . , ε0)| .

Since (εJ−1, . . . , ε0) is the alternating greedy expansion of the other type in each case (with
most significant digit εk for some k < J), we get the estimates by induction. �

At this point we note that Lemma 2 also inductively re-proves the uniqueness of both the
balanced and the unbalanced alternating greedy expansions, since we have J = blog2 |n|c+1
for the balanced and J = dlog2 |n|e for the unbalanced alternating greedy expansions and
εJ = sign(n) for both versions of the alternating greedy expansion.

We also note that the digits of the unbalanced alternating greedy expansion can be
calculated as digitwise subtraction and addition

2(n− 1)− (n− 1) + 1,

since 2(n− 1)− (n− 1) gives the balanced alternating greedy expansion of (n− 1) and the
addition of +1 gives an expansion of n. Since the addition of +1 either cancels a −1 at the
least significant position or replaces a least significant bit 0 by 1, the resulting expansion
is indeed the unbalanced greedy expansion of n which has been proved to be unique.

3. The Simple Joint Sparse Form Revisited

For some d ≥ 1, let x = (x(1), . . . , x(d))T ∈ Zd be a column vector of integers. A joint
(signed binary) expansion of x is an array

ε = (ε
(k)
j )1≤k≤d

j∈
�

0

= (εj)j∈
�

0
∈ {−1, 0, 1}d×

�
0

such that only a finite number of εj is nonzero and such that

x = value(ε) :=
∑

j≥0

εj2
j,

i.e., the rows (ε
(k)
j )j≥0 are expansions of x(k) for 1 ≤ k ≤ d. Its joint Hamming weight is

the number of j ≥ 0 such that εj 6= 0. The εj, j ≥ 0, will be called the columns of the
expansion.

If each row of ε is a unisigned binary or an alternating greedy expansion, we call ε a
joint unisigned or alternating greedy expansion, respectively.

We recall from Solinas [15] that a joint expansion ε of x = (x(1), . . . , x(d))T can be used
for computing the linear combination x(1)P1 + · · · + x(d)Pd of d points P1, . . . , Pd on an
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elliptic curve E, which is a frequent operation in elliptic curve cryptography. The idea is

to define Q`+1 := 0 and Qj = 2Qj+1 +
∑d

i=1 ε
(i)
j Pi. Then x(1)P1 + · · ·+x(d)Pd = Q0. We can

precompute all sums
∑d

i=1 siPi for (s1, . . . , sd) ∈ {−1, 0, 1}d. Then the number of point
additions equals the joint Hamming weight of ε.

Thus we call a joint expansion ε of x a minimal joint expansion of x, if it minimizes the
joint Hamming weight over all joint expansions of x.

In [4], we studied a class of minimal joint expansions, called the simple joint sparse form.
As we will need its properties in the following sections, we summarize the relevant results
of [4] in the following proposition.

Proposition 3. Let d ≥ 1 and x ∈ Zd. Then there is a unique joint expansion ε of x

satisfying the syntactical rule

Aj+1(ε) % Aj(ε) or Aj+1(ε) = ∅, j ≥ 0, (6)

where Aj(ε) = {1 ≤ k ≤ d : ε
(k)
j 6= 0}. It is called the simple joint sparse form of x.

The simple joint sparse form is a minimal joint expansion of x. It can be computed from
right to left by Algorithm 3. It has the property that

among d + 1 consecutive columns of ε, there is at least one 0. (7)

Proof. Existence, uniqueness, and minimality have been proved in [4, Theorem 7]. Algo-
rithm 3 is a reformulation of [4, Algorithm 2] in terms of the digits of an arbitrary joint
expansion of x. The property (7) is an easy consequence of (6). �

A comment on the epitheton “simple”: Solinas [15] had proposed the so-called joint
sparse form of two integers which also minimizes the joint Hamming weight before we
started our paper [4]. Since in the case d = 2, Solinas’ joint expansion needs a look-ahead
of 2 and our expansion needs a look-ahead of 1 when computed by a transducer automaton
from right to left, we called our expansion the “simple joint sparse form”. Since both
expansions are minimal joint expansions, their Hamming weight is equal. In the meantime,
Solinas’ joint sparse form has been generalized to higher dimensions by Proos [13].

For a joint expansion η, we will denote the output of Algorithm 3 when reading η by
algSJSF(η).

While our aim is to present a left-to-right algorithm for computing a minimal joint
expansion, we discuss a few properties of the right-to-left algorithm and the simple joint
sparse form since this will be useful for proving minimality of the output of our algorithms
in Sections 4 and 5. The construction of our left-to-right algorithm in Section 4 will involve
the use of Algorithm 3 for small blocks of joint alternating greedy expansions. Therefore,
we will analyze the behaviour of Algorithm 3 in this special case.

Lemma 4. Let η be a joint alternating greedy expansion of x ∈ Zd and let ε = algSJSF(η).
Then the following assertions hold.

(1) At all times, we have |ε
(k)
j | ≤ 1 for all j and k in Algorithm 3, which implies that

the first inner loop is always empty.
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Algorithm 3 algSJSF: Simple Joint Sparse Form from Right to Left

Input: (η
(k)
j )1≤k≤d

0≤j≤J

arbitrary joint expansion of x ∈ Zd

Output: (ε
(k)
j )1≤k≤d

0≤j≤J

simple joint sparse form of x

ηJ+1 ← 0

ε0 ← η0

A0 ← {1 ≤ k ≤ d : ε
(k)
0 is odd}

for j = 0 to J do

{We have Aj = {1 ≤ k ≤ d : ε
(k)
j is odd}}

εj+1 ← ηj+1

for all k with |ε(k)
j | = 2 do

ε
(k)
j+1 ← ε

(k)
j+1 + ε

(k)
j /2

ε
(k)
j ← 0

end for

Aj+1 ← {1 ≤ k ≤ d : ε
(k)
j+1 is odd}

if Aj+1 ⊆ Aj then

{All components of εj+1 can be made even}
for all k ∈ Aj+1 do

ε
(k)
j+1 ← ε

(k)
j+1 + ε

(k)
j

ε
(k)
j ← −ε

(k)
j

end for

Aj+1 ← ∅
else

{There are components of εj+1 which cannot be made even, thus we generate as
many odd components as possible}
for all k ∈ Aj \ Aj+1 do

ε
(k)
j+1 ← ε

(k)
j+1 + ε

(k)
j

ε
(k)
j ← −ε

(k)
j

end for

Aj+1 ← Aj ∪ Aj+1

end if

end for

(2) Let εj = 0 for some j ≥ 0. Then (εi)i>j = algSJSF((ηi)i>j), i.e., if the algorithm
outputs a zero column, the computation restarts completely.

(3) Let ηi = 0 for all i > j for some j ≥ 0. Then εi = 0 for all i > j, i.e., the
simple joint sparse form of d integers is not longer than the longest alternating
greedy expansion of one of the integers.
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(4) Let J := max{j ≥ 0 : ηj 6= 0} and assume that there is a 1 ≤ k ≤ d such

that η
(k)
i = 0 for all i < J . Let (ε′

J−1, . . . , ε
′
0) = algSJSF((ηJ−1, . . . , η0)), then

(ηJ , ε′
J−1, . . . , ε

′
0) is a minimal joint expansion.

Proof. (1) A digit of absolute value at least two can only be generated by the step

ε
(k)
j+1 ← ε

(k)
j+1 + ε

(k)
j , since the first inner loop has not been executed by induction.

Assume that j is minimum such that such an assignment yields a number of

absolute value at least 2. Just before this critical assignment, we must have ε
(k)
j+1 =

η
(k)
j+1 6= 0. Choose i ≤ j maximal such that η

(k)
i 6= 0 and η

(k)
J = 0 for i < J ≤ j. By

Equation (1), we have η
(k)
i = −η

(k)
j+1. For i ≤ J ≤ j we get ε

(k)
J ∈ {−η

(k)
j+1, 0}. This

implies ε
(k)
j+1 + ε

(k)
j ∈ {0, η

(k)
j+1}.

(2) If εj = 0, we have Aj = ∅. This implies that in this step, none of the inner loops
is nonempty, whence εj+1 = ηj+1, i.e. the algorithm restarts.

(3) If ηj+1 = 0, we have Aj+1 = ∅ and therefore Aj+1 ⊆ Aj is fulfilled, but the
corresponding inner loop is empty. Therefore, εj+1 = 0 after step j. In the next
step, εj+1 = εj+2 = 0, so the algorithm only produces 0 in all subsequent steps.
Note that we used the fact that the first inner loop is empty.

(4) By Lemma 4 (3), the length of ε
′ is appropriate. We always have k /∈ Ai for

i < J when computing algSJSF((ηJ , ε′
J−1, . . . , ε

′
0)). Therefore, k ∈ AJ \AJ−1 which

implies that algSJSF would change η
(m)
J for m ∈ AJ−1 \AJ , but at this step, no zero

column can be produced, so (ηJ , ε′
J−1, . . . , ε

′
0) is minimal, too.

�

Now we can state the crucial proposition.

Proposition 5. Let d ≥ 1, x ∈ Zd and (ηj)0≤j≤J be the joint alternating greedy expansion
of x. Assume that the set

{0 ≤ i ≤ J : algSJSF((ηj)i≤j≤J) contains a column 0}

is nonempty and denote its maximum by I.
Write algSJSF((ηj)0≤j<I) = (ε′

j)0≤j<I and algSJSF((ηj)I≤j≤J) = (ε′′
j )I≤j≤J and denote

their concatenation by ε ∈ {−1, 0, 1}d×J , i.e.,

εj =

{

ε
′
j, if j < I,

ε
′′
j , if j ≥ I.

Then ε is a minimal joint expansion of x.

Proof. First we note that by Lemma 4 (3), (ε′
j)0≤j<I and (ε′′

j )I≤j≤J are joint expansions of
the same integers as (η′

j)0≤j<I and (η′′
j )I≤j≤J , respectively. Therefore ε is a joint expansion

of x.
If ε′

(k)
I−1 is nonzero for some 1 ≤ k ≤ d, say ε′

(k)
I−1 = 1, then the integer

∑I−1
j=0 ε′

(k)
j 2j =

∑I−1
j=0 η

(k)
j 2j is positive, too. Therefore the most significant nonzero digit of (η

(k)
I−1 · · · η

(k)
0 )
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equals +1. This implies that the least significant nonzero digit of (η
(k)
J · · ·η

(k)
I ) equals −1

by (1). We conclude that (η
(k)
J · · · η

(k)
I ε′

(k)
I−1) satisfies (1).

Writing algSJSF((ηJ · · ·ηIε
′
I−1)) = (ε′′′

j )I−1≤j≤J , we easily check that

algSJSF(η) = (ε′′′
J · · ·ε

′′′
I ε

′′′
I−1ε

′
I−2 · · ·ε

′
0),

since Algorithm 3 uses a look-ahead of 1.
If ε

′
I−1 = 0, we have algSJSF(η) = ε by Lemma 4 (2), and there is nothing to prove.

We now consider the case ε
′
I−1 6= 0. We note that (ε′′

J · · ·ε
′′
Iε

′
I−1) is a joint expansion

which contains at least one column 0 by definition of I. This implies that (ε′′′
J · · ·ε

′′′
I−1) also

contains a column 0, say ε
′′′
i = 0 for some i ≥ I. By Lemma 4 (2), we have (ε′′′

J · · ·ε
′′′
i+1) =

algSJSF((ηJ · · ·ηi+1)) and by definition of I, we conclude that there is no column 0 in
(ε′′′

J · · ·ε
′′′
i+1). Therefore, we see that (ε′′

J · · ·ε
′′
Iε

′
I−1) and (ε′′′

J · · ·ε
′′′
I−1) have the same joint

Hamming weight, whence ε and algSJSF(η) have the same joint Hamming weight, too. �

4. Computing a Minimal Joint Expansion from Left to Right

It is the aim of this section to derive an online algorithm which can be realized by a
transducer transforming the joint alternating greedy expansion of x ∈ Zd to an expansion
of the same (and therefore minimal) joint Hamming weight as the simple joint sparse form
from left to right. We note that it is impossible to compute the simple joint sparse form
from left to right (the fractal structures discussed in [4] prove this; cf. also the example
for d = 1 in [6]), we can only compute a joint expansion of the same Hamming weight.
The algorithm presented in this section uses the right-to-left algorithm for subblocks of the
joint alternating greedy expansion as its main ingredient. This makes the analysis simpler,
but may sometimes lead to unnecessary operations in the computation. Therefore, we will
refine this algorithm in Section 5.

Proposition 5 allows us to split the computation of a minimal joint expansion into several
pieces. From (7) we also see that J ≥ I ≥ J − d (if J ≥ d). Therefore, we can use
Algorithm 4 to compute a minimal joint expansion from left to right.

Algorithm 4 algMinJointViaSJSF: Computing a Minimal Joint Expansion from Left to
Right Using algSJSF

Input: x = (x(1), . . . , x(d))T ∈ Zd

Output: joint expansion ε of x of minimal joint Hamming weight.

(η
(k)
j )0≤j≤J ← joint alternating greedy expansion of x

while J ≥ 0 do

I ← max({max(J − d, 0) ≤ i ≤ J : algSJSF((ηj)i≤j≤J) contains a column 0} ∪ {0})
(εj)I≤j≤J ← algSJSF((ηj)I≤j≤J)
J ← I − 1

end while

We note that for fixed d, Algorithm 4 can be implemented as a transducer automaton
transforming the unisigned binary expansions to a minimal joint expansion.
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For d = 2, such a transducer automaton has been explicitly constructed in [5] (we note
that in one case, we introduced a small variation which does not change the Hamming
weight).

We summarize our findings as follows.

Theorem 6. Let d ≥ 1. There is a transducer automaton to transform the unisigned joint
expansion of an integer vector x ∈ Zd to a joint expansion of x of minimal joint Hamming
weight. It can be realized by combining the transducer in Figure 1 and Algorithm 4.

5. Direct Algorithm without Preprocessing

In this section we introduce another left-to-right algorithm that computes a minimal
joint signed binary expansion of d integers from their unisigned binary expansions. This
is a considerable refinement of algMinJointViaSJSF, since it works based on simple column
scanning and bitwise replacement without using algSJSF as an intermediate step. This leads
to fewer replacements in the expansions. An example where Algorithm 4 and Algorithm 5
produce different outputs for the same input is given in Remark 10.

Algorithm 5 scans the unisigned binary expansions of the d integers from the most
significant bit column (J − 1) towards the least significant bit column (0), d + 1 columns
at a time.

Algorithm 5 consists of two steps:

Step 1: Converting the unisigned binary input to the joint alternating greedy expan-
sion.

Step 2: Making replacements on the joint alternating greedy expansion.

In Step 2, three conditions must be satisfied before a replacement takes place. These
three conditions are:

C1: LeftmostIsNonzero 6= ∅
C2: For each k ∈ LeftmostIsNonzero there is an i with

j > i ≥ EndComputingAlternatingGreedy

satisfying ε
(k)
i 6= 0.

C3: {i : j > i ≥ MinNextNonzeroLocation} = {RightmostNonzeroLocation[k] : 1 ≤
k ≤ d and k /∈ BitsAllZero}

If all three conditions are satisfied then the leftmost column of the d + 1 columns being
scanned will be converted from nonzero to zero. The policy is to replace x0 . . . 0x by
0x . . . xx (x ∈ {−1, 1}) in each row k with k ∈ LeftmostIsNonzero. Algorithm 5 then skips
the columns involved in the replacement and restarts the scanning. If one or more of the
three conditions are not satisfied then Algorithm 5 moves rightwards by one column and
restarts the scanning.
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As an example, consider the input (already converted to its alternating greedy expansion
and only the rightmost four columns are shown)





. . . 0 0 1̄ 0

. . . 0 0 0 0

. . . 0 1 0 1̄



 .

We start from j = 3. We note that ε
(0)
3 = ε

(1)
3 = ε

(2)
3 = 0, thus LeftmostIsNonzero = ∅.

C1 is not satisfied so we move to j = 2. We have ε
(0)
2 = ε

(1)
2 = 0 and ε

(2)
2 = 1 so

LeftmostIsNonzero = {2}. C1 is satisfied. Since EndComputingAlternatingGreedy =

max(2−3, 0) = 0 and ε
(2)
0 = 1̄, C2 is satisfied. At this point we have NextNonzeroLocation[2] =

0 and MinNextNonzeroLocation = 0. For row 0, RightmostNonzeroLocation[0] = 1 because

ε
(0)
1 = 1̄ and ε

(0)
0 = 0. For row 1, ε

(1)
2 = ε

(1)
1 = ε

(1)
0 = 0 so 1 ∈ BitsAllZero. For row 2,

RightmostNonzeroLocation[2] = 0 because ε
(2)
0 = 1̄. Therefore {RightmostNonzeroLocation[k] :

1 ≤ k ≤ d and k /∈ BitsAllZero}={0,1}={i : j > i ≥ MinNextNonzeroLocation}. Hence all
conditions C1, C2, and C3 are satisfied. We make replacements on columns 2, 1, and 0.
The final result is





. . . 0 0 1̄ 0

. . . 0 0 0 0

. . . 0 0 1̄ 1̄



 .

Properties of Algorithm 5 are stated in the following lemmas and theorems.

Lemma 7. Let x ∈ Zd be a vector of integers with joint alternating greedy expansion

(ε
(k)
i )0≤i≤J and let us assume that the leftmost column of the sliding window takes value K

at some stage of the execution of Algorithm 5 (running on the unisigned expansion of x).
We set

I := max({0 ≤ i ≤ K : algSJSF((εK, . . . , εi)) contains a 0} ∪ {0}).

Then the output columns (ε′
K , . . . , ε′

I) of Algorithm 5 have the same joint Hamming weight
as algSJSF((εK, . . . , εI)).

Proof. We prove the lemma by induction on K. We note that I ≥ K − d by (7).
If C1 is violated, then we have algSJSF(εK) = 0, hence I = K and ε

′
K = 0, which have

both joint Hamming weight zero. So we can assume that C1 holds. If C2 is not satisfied,
which means that there is a line k which has a nonzero bit in column K and zero bits
in columns K − 1, . . . , max(K − d, 0), Lemma 4 (4) shows that column εK can be left
unchanged. Decreasing K to K − 1 does not alter I, so (ε′

K−1, . . . , ε
′
I) has the same joint

Hamming weight as algSJSF((εK−1, . . . , εI)) by induction. Thus (ε′
K, . . . , ε′

I) has the same
joint Hamming weight as algSJSF((εK, . . . , εI)) by Lemma 4 (4).

Therefore, we can assume that C1 and C2 hold. We assume that C3 is violated. We
choose the smallest i with

K > i ≥ MinNextNonzeroLocation and i /∈ {RightmostNonzeroLocation[k] : 1 ≤ k ≤ d}.

In this case it is easily seen that algSJSF((εi, . . . , εMinNextNonzeroLocation )) = (0, ?, . . . , ?),
where ? stands for some uninteresting digit vector. We get I ≥ MinNextNonzeroLocation.
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Algorithm 5 algMinJoint: Computing a Minimal Joint Expansion from the Unisigned
Binary Expansion from Left to Right

Input: (η
(k)
j ) 1≤k≤d

0≤j≤J−1
joint unisigned binary expansion of x = (x(1), . . . , x(d))T ∈ Zd

Output: (ε
(k)
j )1≤k≤d

0≤j≤J

signed binary expansion of x with minimum joint Hamming weight

ηJ ← 0

η−1 ← 0

StartComputingAlternatingGreedy ← J
j ← J
while j ≥ 0 and StartComputingAlternatingGreedy ≥ 0 do

EndComputingAlternatingGreedy ← max(j − d, 0)
for 1 ≤ k ≤ d do

for StartComputingAlternatingGreedy ≥ i ≥ EndComputingAlternatingGreedy do

ε
(k)
i ← η

(k)
i−1 − η

(k)
i

end for

end for

StartComputingAlternatingGreedy ← EndComputingAlternatingGreedy − 1

LeftmostIsNonzero ← {1 ≤ k ≤ d : ε
(k)
j 6= 0}

if C1 and C2 are satisfied then

NextNonzeroLocation[k]← max{i : j > i and ε
(k)
i 6= 0} for each

k ∈ LeftmostIsNonzero
MinNextNonzeroLocation ← min{NextNonzeroLocation[k] : k ∈
LeftmostIsNonzero}
for 1 ≤ k ≤ d do

if ε
(k)
i 6= 0 for some j > i ≥ MinNextNonzeroLocation then

RightmostNonzeroLocation[k]← min{j > i ≥ MinNextNonzeroLocation :

ε
(k)
i 6= 0}

end if

end for

BitsAllZero ← {1 ≤ k ≤ d : ε
(k)
i = 0 for all j > i ≥ MinNextNonzeroLocation}

if C3 is satisfied then

for all k ∈ LeftmostIsNonzero do

ε
(k)
i ← ε

(k)
j for each i with j − 1 ≥ i ≥ NextNonzeroLocation[k]

ε
(k)
j ← 0

end for

j ← MinNextNonzeroLocation − 1
else

j ← j − 1
end if

else

j ← j − 1
end if

end while
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In the case I > MinNextNonzeroLocation, there is a k ∈ LeftmostIsNonzero satisfying
NextNonzeroLocation[k] < I. By Lemma 4 (4) this means that we can keep εK and
decrease K to K − 1 without changing I. Therefore, we are left with the case I =
MinNextNonzeroLocation. Lemma 4 (2) says that algSJSF((εK , . . . , εi, . . . , εI)) restarts
after dealing with column i. By maximality of I, the output of algSJSF((εK, . . . , εi)) does
not contain a 0. Therefore, once again, we can decrease K to K − 1 without changing I
and use the induction hypothesis.

Finally, we consider the case that all three conditions C1, C2, and C3 are satisfied.
Then algSJSF((εK , . . . , εMinNextNonzeroLocation )) = (0, ?, . . . , ?), where all ? 6= 0. This implies
that I ≥ MinNextNonzeroLocation. If I > MinNextNonzeroLocation, there is a k ∈
LeftmostIsNonzero with NextNonzeroLocation[k] < I, hence algSJSF((εK , . . . , εI)) cannot
contain a zero column, contradiction. Therefore we have I = MinNextNonzeroLocation,
and it is clear that (ε′

K, . . . , ε′
I) and algSJSF((εK, . . . , εI)) both have exactly one zero

column.
�

Theorem 8. The output of Algorithm 5 has minimal joint Hamming weight among any
signed binary expansions of the d given integers.

Proof. This is a direct consequence of Proposition 5 and Lemma 7. �

Remark 9. Since the output of Algorithm 5 has minimal joint Hamming weight, the results
in [5, Table 3] apply for our algorithm, too: If HJ,d denotes the joint Hamming weight of
a minimal joint expansion of d random J-digit integers, the asymptotic expected value
E(HJ,d) and the asymptotic variance V(HJ,d) can be found in Table 1. By Hwang’s [7]
quasi-power theorem, we also know a central limit theorem, cf. [5].

Remark 10. We remark that the Algorithms 4 and 5 both produce a joint expansion of
minimal joint Hamming weight, but they do not necessarily produce the same output.
However, the positions of the 0-columns can be shown to be the same. As an example,
consider the input (already converted to its alternating greedy expansion)

(

0 1 0 1̄ 0 1 0 1̄
1 0 0 1̄ 1 0 0 1̄

)

.

Algorithm 4 produces the output
(

1 1̄ 0 0 1̄ 1̄ 0 1̄
1 0 0 0 1̄ 0 0 1̄

)

,

whereas Algorithm 5 produces
(

0 1 0 0 1̄ 1̄ 0 1̄
1 0 0 0 1̄ 0 0 1̄

)

,

since changing the first column does not alter the joint Hamming weight (cf. Lemma 4 (4)).
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d 1
J
E(HJ,d)

1
J
V(HJ,d)

1
1

3

2

27

2
1

2

1

16

3
23

39

2800

59319

4
115

179

210368

5735339

5
4279

6327

7565047808

253275687783

6
152821

218357

263523314106368

10411213601145293

7
21292819

29681427

577533922219434967040

26148954556492040001483

Table 1. Asymptotic means and variances of the minimal joint Hamming
weight of d random J-digit integers.

Lemma 11. Let J ≥ d be the index of a column such that we have j = J at some stage
of Algorithm 5. Then at least one of the columns J, . . . , J − d will be a zero column in the
output of Algorithm 5.

Proof. Since at least one of d + 1 consecutive output columns of algSJSF is zero by (7), we
have I ≥ J − d for the I defined in Lemma 7. By the same Lemma 7, at least one column
(in the same range) of the output of Algorithm 5 must also be a 0. �

Theorem 12. Among 2d+1 consecutive columns of the output of Algorithm 5, there is at
least one 0.

Proof. By Lemma 11, in the worst case, Algorithm 5 makes the leftmost column out of
d + 1 consecutive nonzero columns a zero column. Then the remaining d nonzero columns
that have been replaced are skipped. If we are unlucky enough then the next d columns
that will be looked at might be all nonzero and impossible to be replaced at all. Thus in
the worst case only one zero column results out of 2d + 1 consecutive columns. �
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When implemented in hardware, Algorithm 5 leads to a significant reduction in hardware

overhead. This is because the binary input η
(k)
i is never used again after the calculation of

ε
(k)
i . Therefore the input array η

(k)
j and the output array ε

(k)
j can share the same memory

space.
During the computation, the number of active columns, i.e., columns that are being

scanned, is at most d + 1. If the output of Algorithm 5 is input to a realtime processor
for further operation, then the amount of required memory could be reduced to as low as
d× (d + 1) signed binary bits.

6. w-NAF

Let w ≥ 1 be an integer. The w-NAF of an integer n is the unique binary expansion
with digits in Dw := {0,±1,±3,±5, . . . ,±(2w − 3),±(2w − 1)} such that any two nonzero
digits are separated by at least w zeros. In the case w = 1, the 1-NAF is usually just called
NAF, cf. Reitwiesner [14]. It is clear that the w-NAF can be computed from right to left
by selecting the rightmost digit according to n mod 2w+1.

Avanzi [1] showed that the w-NAF has minimal Hamming weight amongst all signed
binary expansions with digits of absolute value less than 2w. He also gave an algorithm for
computing a Dw-expansion of minimal Hamming weight from left to right. In this section,
we show that this can be accomplished in a very natural way by using the alternating
greedy expansion.

The w-NAF and therefore its left-to-right analogue presented here can also be used
for computing multiples on elliptic curves: it corresponds to the so-called sliding window
method where blocks of w digits of the binary expansion lead to one addition of the
precomputed point corresponding to the block. Since this operation is also carried out
from left to right, it is advantageous to compute a minimal such expansion from left to
right.

Theorem 13. Algorithm 6 computes a binary Dw-expansion of n whose Hamming weight
is minimum amongst all binary expansions of n with digits {−(2w − 1), . . . , (2w − 1)}.

We remark that we compute a binary expansion whose nonzero digits are odd; its Ham-
ming weight is still minimum amongst all binary expansions which also include even digits.

Proof. Since the algorithm works by replacing (ηj · · · ηt) by (0 · · ·0
∑j

`=t η`2
`−t), we cer-

tainly have value(ε) = value(η). Furthermore we have |εt| ≤ 2j−t ≤ 2w by (4) and (5).
Since ηt 6= 0, we conclude that all εt ∈ Dw.

To prove minimality, we use induction on J . Of course, we may assume that ηJ 6= 0. We
consider the first replacement εt ←

∑J

`=t η`2
`−t and set m = n−εt2

t. It is clear that m has
(possibly unbalanced) alternating greedy expansion (ηJ−w−1, . . . , η0). We define h to be
the Hamming weight of the w-NAF of m which, by induction, equals the Hamming weight
of the output of Algorithm 6 with input (ηJ−w−1, . . . , η0). The ε produced by Algorithm 6
with input (ηJ , . . . , η0) has therefore Hamming weight h + 1.
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Algorithm 6 algMinWExpansion: Computing a Minimal Binary Expansion with Digits of
Absolute Value at most 2w − 1 from Left to Right

Input: Alternating greedy expansion (ηJ , . . . , η0) of n; w ≥ 1
Output: Dw-expansion ε of n of minimal Hamming weight

ε← 0

j ← J
while j ≥ 0 do

if ηj = 0 then

j ← j − 1
else

t← max(j − w, 0)
while ηt = 0 do

t← t + 1
end while

εt ←
∑j

`=t η`2
`−t

j ← j − w − 1
end if

end while

We write the w-NAFs of m and n as

m =
h

∑

k=1

ak2
rk , n =

h′

∑

k=1

bk2
sk ,

respectively, where ak 6= 0 and bk 6= 0 for all k. We have to prove that h′ ≥ h + 1.
The w-NAF condition implies that rk+1 ≥ rk + w + 1 for k ≥ 1. Using (4) and (5), we

have

2rh ≤ |ah2
rh| =

∣

∣

∣m−
h−1
∑

k=1

ak2
rk

∣

∣

∣ ≤ 2J−w−1 + (2w − 1)

h−1
∑

k=1

2rk

= 2J−w−1 +

h−1
∑

k=1

2rk+w −
h−1
∑

k=1

2rk ≤ 2J−w−1 +

h
∑

k=2

2rk−1 −
h−1
∑

k=1

2rk

≤ 2J−w−1 + 2rh−1 − 2r1 < 2J−w−1 + 2rh−1,

which implies rh − 1 < J − w − 1 and therefore rh ≤ J − w − 1. We also conclude that
|ah| ≤ 2J−w−1−rh.

Furthermore, for k ≤ h− 1, the quantities ak and rk only depend on m mod 2rh−1+w+1.
Since rh−1 +w+1 ≤ rh ≤ J−w−1 and m ≡ n (mod 2J−w), we conclude that ak = bk and

rk = sk for 1 ≤ k ≤ h− 1. We obtain ah + εt2
t−rh =

∑h′

k=h bk2
sk−rh. Since t ≥ J − w > rh

and ah is odd, we get sh = rh.
By (4) and (5) we have

∣

∣ah + εt2
t−rh

∣

∣ ≥ 2J−t−1 · 2t−rh − 2J−w−1−rh = 2J−rh−1 − 2J−w−1−rh ≥ 2w − 1. (8)
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If equality holds, |εt| = 2J−t−1, which implies (εt is odd) that t = J − 1, sign(ah) =
sign(m) = − sign(ηt) = sign(εt) and therefore |ah + εt2

t−rh | = |ah|+ |εt2
t−rh|. This implies

that equality cannot hold in (8). We conclude that h′ > h. �
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